
Aspect oriented design for team learning management system

Ghada Al-Hudhud
College of Computer and Information Sciences, Department of Information Technology, King Saud University, Riyadh, Saudi Arabia

a r t i c l e i n f o

Article history:
Available online xxxx

Keywords:
Multi agent system (MAS)
Aspect-oriented software development
(AOSD)
Team learning activities
Learning styles for group learning activities
Learning management systems

a b s t r a c t

A multi agent system (MAS) is a complex system composed of heterogeneous agents each has a number
of concern that are cross-cutting such as mobility, learning, collaboration, adaptation, interaction and
autonomy. MASs are currently designed to be superimposed on object oriented designs so that it can
be possible to separate these concerns in order to improve reusability and maintainability. Hence,
aspect-oriented software development (AOSD) exists to cope with complexity of software development
for the purpose of separating functionality that are not handled by other software development. Follow-
ing this line of thought, AOSD is considered for developing aspects for team learning management sys-
tem; that allows recognizing learner’s learning preferences and associated learning style in the
learning environment. This paper presents an approach to move from object oriented eTutor to agent ori-
ented eTutor through aspect oriented software development. This transition is being deployed through
the implementation level.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Object oriented (OO) software engineering provides standard
modularity mechanisms, but they are unable to modularize all
concerns of complex systems (Reis, Reis, Schlebbe, & Nunes,
2002). Agent oriented approaches provide unique and advanced
program structuring and modularization techniques that explicitly
capture the crosscutting system structure. Agent oriented software
engineering enhance improving the modularity of software by
focus on separation of concerns SOC into aspects and structuring
system during system development (O’Riordan, 2001). Agent
oriented software engineering approach is used to develop high
complex system with highly modularity of all concerns. Currently
existing OO approaches do not support early stage handling of
the SOC (Garcia, Kulesza, Chavez, & De Lucena, 2006; Garcia,
Kulesza, & Lucena, 2005). Moreover, the current OO software
development approaches handle generally a limited number of
agent types which are encapsulating the agent behavior and data
an object. This results in lack of support for dealing with the
interactive and overlapping nature of concerns.

Another approach is current well known; multi agent systems
(MAS). MAS applications is composed of multiple types of agents,
each of them having different concerns, properties and roles that
might overlap and interact with each other accordingly, this
requires scrutinizing a structured way for composition to be con-
sidered during an early stage of design that supports and handle

the separation of concerns in terms of each agent functionalities
and role to support maintainability and reusability. Software engi-
neering of MASs involves a number of concerns (Brichau,
Chitchyan, Rashid, & D’Hondt, 2008; Cunha, Sobral, & Monteiro,
2006). There is some challenges appear in modeling, designing,
and development of these concerns (aspects). This is because they
are inherently crosscutting as the system complexity increases.
Unfortunately, the existing modeling languages, design and imple-
mentation approaches are not able to provide explicit support for
the separation of crosscutting MAS-related concerns.

For the purpose of overcoming the above mentioned problems,
aspect oriented software development (AOSD) is considered. AOSD
supports the developer in cleanly separating components (func-
tionality) and aspects (concerns) from each other, by providing
mechanisms that make it possible to abstract and compose them
in complex MAS (Reis et al., 2002). ASOD has been proposed as a
technique for improving SOC in software construction and support
improved reusability and ease of evolution ate the implementation
stage (Cunha et al., 2006). The aspect oriented techniques deal with
crosscutting concerns that separate and compose the system
(Garcia, Kulesza, Lucena, 2005).

This paper investigates how to integrate agents neatly involving
the redesign and refactoring of an existing object oriented learning
management system while maintain reusability. The following sec-
tions in the paper present AOSD which allows supporting SOC of
MAS. The goals of our proposal is to achieve an improved adapt-
ability in a learning management system to support the SOC and
accordingly to improve reusability.

http://dx.doi.org/10.1016/j.chb.2015.01.032
0747-5632/� 2015 Elsevier Ltd. All rights reserved.

E-mail address: galhudhud@ksu.edu.sa

Computers in Human Behavior xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Computers in Human Behavior

journal homepage: www.elsevier .com/locate /comphumbeh

Please cite this article in press as: Al-Hudhud, G. Aspect oriented design for team learning management system. Computers in Human Behavior (2015),
http://dx.doi.org/10.1016/j.chb.2015.01.032

http://dx.doi.org/10.1016/j.chb.2015.01.032
mailto:galhudhud@ksu.edu.sa
http://dx.doi.org/10.1016/j.chb.2015.01.032
http://www.sciencedirect.com/science/journal/07475632
http://www.elsevier.com/locate/comphumbeh
http://dx.doi.org/10.1016/j.chb.2015.01.032


In the background section, a description and review for objet
oriented paradigm relating it to other software development para-
digms MAS, AOSD. In Section 3, description of our case study.

2. Background

2.1. Object-oriented software development

The term of OO is to model a system using a classes that have a
set of attribute to define and set of operations to perform and these
classes after run time create an object to store data. To model the
system, OO use UML and RUP to modularize these classes and per-
form function. UML is a unified modeling language and RUP is
Rational Unified Process used to model OO Analysis and design.
We can improve the reusability of OO by using design pattern or
AOSD (Sommerville, 2010). But today most systems are tend to
be complex so this is a main problem of using OO so we use
MAS instead to deal with complexity and apply AOSD to enhance
reusability and maintainability (Sommerville, 2010).

2.2. Agent-oriented software engineering AOSE

AOSE is a complementary for OOSD (Garcia, Kulesza, Lucena,
2005). AOSE is defined as an approach in software development
that have methodologies and modeling method for integrating het-
erogeneous agent into software system (Juneidi, 2004). To solve
complex problems, these agents must work cooperatively with
other agents in a heterogeneous environment (Juneidi, 2004). This
is the area of multi agent systems (MAS). MAS is an organization of
autonomous agents that have particular objective to achieve and
interact with each other (Ahuja & Ahuja, 2013).

2.3. Aspect-oriented software development (AOSD)

AOSD is an evolving software design paradigm to modularize
concerns by providing support to separating the functionality
for its cross-cutting concerns. Existing approaches, including
Structured Programming, Object-Oriented Programming (OOP)
and Agent-Oriented programming (AOP) not handle these con-
cerns well. So AOSD complements these approaches, but does
not replace them (Garcia, Kulesza, Lucena, 2005; Sabatucci,
Garcia, Cacho, Cossentino, & Gaglio, 2008). The main goal of AOSD
is to enhance modularization of crosscutting concerns in a sys-
tem, to manage the relationship between represented concerns.
The concerns can be intermixed throughout the design and
implementation; common examples include error handling, log-
ging, and security (Brichau et al., 2008). Concerns can relate to
functional or nonfunctional requirements. The problem of

crosscutting concerns that are make systems difficult to maintain,
increase the complexity of the system and reduce the reusability
(Kulesza et al., 2006). By applying AOSD techniques, these con-
cerns can be put into separate modules called aspects, untangling
them from each other and make program easier to maintain and
reuse (O’Riordan, 2001; Sabatucci et al., 2008). Aspect is an
abstraction that modularizes these concerns (Garcia, Kulesza,
Lucena, 2005).

2.4. Object, agent and aspect comparison

A comparison between object, agent and aspect is presented in
Table 1. Nowadays aspect-oriented software development is
becoming very important because it is promoting to improve
separation of concerns, so they make software systems easier to
maintain and reuse. It is important to verify that emerging
development paradigms support the improvement of MASs
modularization of the crosscutting concerns relative. Also, It is
important to understand the relationships between aspect and
agent-oriented.

AOSD is an evolution of current software development tech-
nologies. Its purpose is complementing current paradigms in
order to improve the separation of crosscutting concerns in
software development, providing better understandability,
maintainability and reusability to the artifacts generated during
software development lifecycle. The aspect oriented paradigm is
recent and, therefore, there is no consensus about the concepts
and practices it encloses.

Fig. 1 shows that the classical concerns that agent systems soft-
ware engineers tackle in OO software engineering are different
from concerns that related to agents, such as: agent autonomy,
interaction, adaptation, collaboration, learning, and mobility (see
Table 2 and 3).

2.5. Separation of concern

A concern can be thought of as a part of software that repre-
sents a single concept (Garcia, Kulesza, Lucena, 2005). Encapsulat-
ing and manipulating those parts of software that are relevant to a
particular concern is commonly known as separation of concerns
(SOC) (Brichau, Chitchyan, Rashid, & D’Hondt, 2008; Garcia et al.,
2003). Separating these concerns from components requires a
mechanism for composing them later. The process of composing
is called a join points. Join points are well-defined points in the
dynamic execution of the program. Examples of join points are
method calls and method executions (Reis, Reis, Schlebbe, &
Nunes).

Table 1
Comparison between Object, agent, and aspect.

Definition Component Properties

Object 1. Abstraction
2. Represents an entity
3. Has an identity Encapsulates a state and behavior

1. Attribute
2. Operation

1. Interaction
2. Learning

Agent 1. Encapsulated computer system
2. Situated in some environment,
3. Capable of flexible, autonomous action in that environment
4. meet its design objectives, (Garcia, Kuleska, Sant’Anna, Chavez, & Lucena, 2005)

1. Goals
2. Believes
3. Plans
4. Capabilities

1. Interaction
2. Adaptation
3. Autonomy
4. Learning
5. Mobility
6. Collaboration

Aspect 1. Abstraction
2. Separate the concern Deals with cross-cutting (require at several component) and

Encapsulated into modules (Garcia, Kuleska, Sant’Anna, Chavez, & Lucena, 2005)

1. Joint point
2. Advice-the code to implement the cross-

cutting concern.
3. Poitcut- a statement that defines where

the aspect will be woven into the program

1. Interaction
2. Adaptation
3. Autonomy
4. Learning
5. Mobility
6. Collaboration

2 G. Al-Hudhud / Computers in Human Behavior xxx (2015) xxx–xxx

Please cite this article in press as: Al-Hudhud, G. Aspect oriented design for team learning management system. Computers in Human Behavior (2015),
http://dx.doi.org/10.1016/j.chb.2015.01.032

http://dx.doi.org/10.1016/j.chb.2015.01.032


Download English Version:

https://daneshyari.com/en/article/10312601

Download Persian Version:

https://daneshyari.com/article/10312601

Daneshyari.com

https://daneshyari.com/en/article/10312601
https://daneshyari.com/article/10312601
https://daneshyari.com

