Computers in Human Behavior 51 (2015) 734-741

Contents lists available at ScienceDirect

T COMPUTERS IN

HUMAN BEHAVIOR

Computers in Human Behavior

journal homepage: www.elsevier.com/locate/comphumbeh

A collaborative testbed web tool for learning model transformation
in software engineering education

@ CrossMark

D. Rodriguez-Gracia, J. Criado, L. Iribarne *, N. Padilla

Applied Computing Group, University of Almeria, Spain

ARTICLE INFO ABSTRACT

Article history:
Available online 20 December 2014

Software Engineering provides mechanisms to design, develop, manage and maintain social and collab-
orative software systems. At present, the Software Engineering Curricula includes teaching Model-Driven
Engineering (MDE) as a new paradigm that enables higher productivity, attempting to maximize compat-
ibility between systems. Modern learning methods MDE require the use of practical approaches to ana-
MDE lyze new model-transformation techniques. Model transformations are carried out by using very high-
Model transformation level languages, like the ATL language. This model transformation language is built as a plugin for the
M2M ) o .

ATL Eclipse framework, and users who want to collaborate and develop software with it, have some difficul-
EMF ties executing ATL transformations outside this platform. To handle models at runtime, it is interesting to
perform the transformations in a standalone way. In this context, we have developed a testbed web tool
which aims to be useful for learning model transformation techniques. The tool offers a Graphical User
Interface to test and verify the involved model transformations. The proposal is useful as a collaborative
scenario for learning MDE and model transformation issues and techniques in Software Engineering

Keywords:

Learning tool

education.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, the Software Engineering (SE) educators have to deal
with the difficulty of teaching students not only the theoretical
concepts (Offutt, 2013) but also the engineering processes for
actual projects. It is often not easy to find representative examples
that illustrate the software engineering process and the difference
of abstraction between software engineering programs and com-
puter science programs (Parnas, 1999). Nevertheless, the best
way to get in touch with these techniques is testing them by means
of practical examples and using the right tools when students are
learning SE.

At present, the Curriculum in software engineering includes
teaching Model-Driven Engineering (MDE) as a new paradigm in
the software development that enables higher productivity
attempting to maximize compatibility between systems. The pre-
vious statements can also be applied in the case of MDE, because
this methodology requires the use of practical approaches that
allow both the educators and software engineering students to
analyze model transformation techniques.

* Corresponding author.
E-mail address: luis.iribarne@ual.es (L. Iribarne).

http://dx.doi.org/10.1016/j.chb.2014.11.096
0747-5632/© 2014 Elsevier Ltd. All rights reserved.

Within MDE, model transformations are the main mechanism
for the development of software systems, because these operations
allow us to automate the management of the models which have
been defined to describe them. In Model-Driven Architecture
(MDA), model transformations have traditionally been used at
design time to build software from the Computation Independent
Model (CIM) level, going through Platform Independent Model
(PIM) and Platform Specific Model (PSM) levels, to the code level.
Furthermore, model transformations have also been used to refine
models of a particular level based on certain modifications of the
system along its life cycle. However, at present, some systems
require to adapt themselves at runtime due to the changes in the
system context or due to new requirements that were not detected
in the design phase (Blair, Bencomo, & France, 2009).

The most powerful method for implementing model transfor-
mations is the use of transformation languages. ATLAS Transforma-
tion Language (ATL) (Jouault, Allilaire, Bézivin, & Kurtev, 2008) is
one of the most widely used model transformation languages. It
is usually executed using the specific plugin within the Eclipse
platform. This fact implies that learning, design, implementation
and execution of ATL model transformations depend on the plat-
form, which is not always desirable. It may be interesting to be able
to run the transformations outside such framework, allowing more


http://crossmark.crossref.org/dialog/?doi=10.1016/j.chb.2014.11.096&domain=pdf
http://dx.doi.org/10.1016/j.chb.2014.11.096
mailto:luis.iribarne@ual.es
http://dx.doi.org/10.1016/j.chb.2014.11.096
http://www.sciencedirect.com/science/journal/07475632
http://www.elsevier.com/locate/comphumbeh

D. Rodriguez-Gracia et al./ Computers in Human Behavior 51 (2015) 734-741 735

open access to model transformation techniques and encouraging
the use of such transformations to adapt systems at runtime.

In this context, the teaching-learning process can be improved
if it is carried out collaboratively between the different actors
involved in the process. In this regard, Computer-Supported Collab-
orative Learning (CSCL) may provide the strategies required to suc-
cessfully achieve such process. CSCL is based on the development
of software applications in which the collaboration has a special
emphasis. In this paper, we describe a tool available on the web
that aims to bring software engineering and model transformation
techniques to SE education. This tool is part of a series of applica-
tions that together conform a CSCL environment. In this socio-
technical environment, two types of products appear: those prod-
ucts used for learning a specific feature of the domain of the SE
(such as the tool described in this paper), and those ones used to
support collaboration tasks (e.g., a collaborative editor, a subver-
sion repository, etc.).

This paper focuses solely on describing the product which has
been developed for the collaborative learning of model transforma-
tion techniques. For this purpose, the tool makes use of ATL and
Eclipse Modeling Framework (EMF) (Steinberg, Budinsky, Merks,
& Paternostro, 2008) libraries to provide model transformation
and model validation services. These capabilities have been tested
by implementing a sequence of transformations at runtime. This
transformation sequence results in an adaptation process which
is in charge of dynamically generating a non-preset Model-to-
Model (M2M) transformation from a repository of rules, which is
responsible for adapting component-based software systems.
Thus, the tool allows us to study how model transformations work
based on the execution of this adaptation process, which operates
in a standalone way without depending on the Eclipse platform.

As mentioned above, the main use case of the tool is to provide
an execution environment for testing the adaptation of compo-
nent-based systems. Therefore, any software system which is built
from components can be a use case of the tool and, consequently,
of the underlying adaptation process. Therefore, some application
examples are the smart home software systems, smart TV applica-
tions, component-based robotic systems, widget-based user inter-
faces, etc. All these example scenarios offer a component-based
architecture that may have the necessity of being adapted at run-
time and hence the proposed tool can be used to learn how model
transformations can be applied within this context.

The rest of the article is organized as follows. Section 2 reviews
the context of the tool and the implemented adaptation process.
Then, Section 3 describes the tool design and implementation
details. Later, Section 4 gives some transformation examples for
the better understanding of how the tool works and discusses
the results. Section 5 shows an overview of related works and,
finally, Section 6 presents the conclusions of the work.

2. Adapting component-based software systems

In order to understand the developed tool, it is necessary to
describe the scenario from which the model transformation
sequence that is executed emerged. The aim of our sequence of
transformations is to adapt component-based software systems
at runtime. In our research work, component-based software sys-
tems are represented in four levels, from the task specification to
the running software architectures as it is explained in (Criado,
[ribarne, Padilla, Troya, & Vallecillo, 2012) (see Fig. 1). The highest
level of abstraction that describes our architectures is the task and
concepts level which matches the CIM level in MDE. The next one
is the abstract architectural model level which corresponds to the
PIM level in MDE. It represents the software architecture in terms
of what kind of components it must contain, what the relationships

between them are like, and what specifications these components
have. Then, the concrete architectural model level corresponds to
the PSM level in MDE and it describes what concrete components,
which have been selected from a repository, best fulfill the abstract
definition of the software architecture. Finally, the code level in
MDE is represented by the final software architectures, which are
made up of the source code that generates the running software
system.

The tool focuses on the execution of the mentioned transforma-
tion sequence, which is performed at the abstract level of the archi-
tecture definitions. Its goal is to adapt an architectural model using
an M2M transformation not defined a priori which is built at run-
time by selecting some transformation rules defined in a repository
(Rodriguez-Gracia, Criado, Iribarne, Padilla, & Vicente-Chicote,
2012). The transformation that adapts the architectural models is
horizontal and it occurs in the PIM level. In addition, this kind of
transformation is endogenous, because the source and the target
models are defined according to the same metamodel (Mens &
Van Gorp, 2006).

Our adaptation process comprises a sequence of M2M transfor-
mations which, taking as inputs (a) an initial architectural model,
(b) a model with the context information and (c) a repository
model containing the transformation rules, generates (d) the
adapted architectural model as output (Fig. 2). Although the pur-
pose of this paper is not to describe the adaptation process in
depth, it is necessary to briefly introduce the involved
transformations:

(a) ContextProcessing is an M2M transformation in charge of
processing the context information and resolving the adap-
tation operations that must be executed.

(b) RRR is an M2M transformation which is responsible for rat-
ing the transformation rules of the repository.

(c) RuleSelection is an M2M transformation process which
selects the highest rated rules.

(d) RSL is an M2M transformation that updates the attributes of
the rule repository based on the selected rules.

(e) RuleTransformation is a Higher-Order Transformation
(HOT) (Tisi, Jouault, Fraternali, Ceri, & Bézivin, 2009) which
is in charge of translating the selected adaptation rules into
ATL rule model.

(f) ATLExtraction is a Textual Concrete Syntax (TCS) (Jouault,
Bézivin, & Kurtev, 2006) extraction process responsible for
generating the ATL code from the ATL rule model.

(g) ArchitecturalModelTransformation is the M2M transfor-
mation created dynamically as result of the transformation
sequence and it is in charge of adapting the initial architec-
tural model by applying the selected transformation rules.

These transformations within the adaptation sequence are
invoked in the correct order from the web tool and the generated
results are shown to the user by means of a graphical user inter-
face. These results include: the adapted architectural model, the
updated values of the repository of rules and the log information
related to the model transformations executed.

3. A web tool for testing model transformations

The sequence of transformations described above provides an
appropriate scenario to learn the behavior of model transforma-
tions. However, it is essential to have a tool to carry out this adap-
tation process, not only running the transformations involved, but
also providing the user with a test scenario which allows him/her
to vary the input conditions and see the results that are produced
as output.



Download English Version:

hitps://daneshyari.com/en/article/10312613

Download Persian Version:

https://daneshyari.com/article/10312613

Daneshyari.com


https://daneshyari.com/en/article/10312613
https://daneshyari.com/article/10312613
https://daneshyari.com

