Journal of Operations Management 39-40 (2015) 1-5

journal homepage: www.elsevier.com/locate/jom

Journal of Operations Management

=

Contents lists available at ScienceDirect =

Journal of _
Operations

- Management

Editorial

System dynamics perspectives and modeling opportunities for research Q) oo

in operations management

1. Introduction

It is an exciting time to work in operations management. Ad-
vances in theory and methods, including behavioral operations, dy-
namic modeling, experimental methods, and field studies provide
new insights into challenging operational contexts. Yet the world
of operations continues to change rapidly, creating new and diffi-
cult challenges for scholars. Increasingly, operations management
requires theory, models and empirical methods to address the
cross-functional, interdisciplinary character of modern operational
systems and the complex nonlinear dynamics these systems
generate.

The OM research community has a long tradition of dynamic
modeling, going back at least to the pioneering work of Forrester
(1958) and Holt et al. (1960). These innovators recognized that
even core processes in organizations, such as production and sup-
ply chain management, involve critical feedbacks with other orga-
nizational functions and with other organizations and actors
including customers, suppliers, workers, competitors, financial
markets, and others. They recognized that these interactions and
feedbacks often involve significant time delays, nonlinearities, in-
formation distortions, and behavioral responses that often cause
dysfunctional, suboptimal behavior and slow learning and process
improvement. The challenge, however, has been to develop, articu-
late and test parsimonious theories to explain the behavior of com-
plex systems, to test policies for improvement, to implement these
in real organizations, and to assess their impact over time.

Forrester’s insight was to use ideas from control theory to map
and explain industrial problems (Forrester 1958; 1961; Richardson
1991 traces the history of feedback control and systems theory from
the Greeks through the development of nonlinear dynamics). For-
rester’s first system dynamics model explained persistent oscilla-
tions of production and sales in a manufacturing supply chain.
Forrester’s model integrated aspects of operations that had not pre-
viously been considered — e.g., limited information flow across or-
ganizations and functions within organizations, delays in gathering
information, making decisions and in the implementation and
impact of those decisions, and the behavioral, sometimes subopti-
mal decision rules managers used to make inventory and produc-
tion decisions at each level of the supply chain. Forrester (1961)
also integrated advertising and consumer behavior into the model,
expanding the boundary of analysis beyond conventional inventory
theory at the time. Forrester’s goals were broader than explaining
an important operations issue; rather, he created a general
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approach to dynamic modeling any management system, indeed,
any dynamic system, along with the conceptual and software tools
to develop, test, and improve behavioral, dynamic models of hu-
man systems, and implement the recommendations arising from
them. Soon after the publication of Industrial Dynamics, these con-
cepts were applied to a variety of contexts, first in management,
and soon after to ecological, urban, and societal problems, among
others. By the late 1960s the breadth of the field led to a name
change, from industrial dynamics to system dynamics (SD), and
the growth of a vibrant field of study, taught around the world
(see e.g. http://systemdynamics.org).

There are many conceptual overlaps and synergies between OM/
OR and SD; these can be traced to the origins and stated goals of
both fields (see Lane, 1997; and GroRler et al., 2008). Here we focus
on the methodological elements of SD that are most distinctive and
relevant to the OM community.

First, system dynamics models are structural, behavioral repre-
sentations of systems. The behavior of a system arises from its
structure. That structure consists of the feedback loops, stocks
and flows, and nonlinearities created by the interaction of the phys-
ical and institutional structure of a system with the decision-
making processes of the agents acting within it (Forrester, 1961;
Sterman, 2000). The physical and institutional structure of a model
includes the stock and flow structures of people, material, money,
information, and so forth that characterize the system. The decision
processes of the agents refer to the decision rules that determine
the behavior of the actors in the system. The behavioral assump-
tions of a simulation model describe the way in which people
respond to different situations, for example, the way managers
perceive inventory, forecast demand, assess the delivery time for
materials, and use these perceptions and expectations to schedule
production, hire workers, adjust prices, and so on. Accurately por-
traying the physical and institutional structure of a system is rela-
tively straightforward. In contrast, discovering and representing
the decision rules of the actors is subtle and challenging. To be use-
ful, simulation models must mimic the behavior of the real decision
makers so that they respond realistically, even when they deviate
from optimality, and those decision rules must be globally robust
so that the simulated actors behave appropriately, not only for con-
ditions observed in the past but also for circumstances never yet
encountered. SD models therefore have much in common with
models in the behavioral operations tradition (See Bendoly et al.,
2010a,b for a partial review): in both communities, decision makers
are boundedly rational, rely on heuristics, and are often influenced
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by emotion and stressors that affect physiological arousal.

Second, SD models capture disequilibrium. Since different deci-
sion processes govern the inflows and outflows to the stocks that
characterize the state of the system, disequilibrium is the rule
rather than the exception (Sterman, 2000). For example, the rate
at which customers arrive at a hospital emergency department,
or place orders for new products, differs from the rate at which
they are treated, or orders fulfilled, leading to queues and delays
in medical treatment, or wait lists of unsatisfied customers. The re-
actions of actors to these imbalances create feedbacks, both nega-
tive and positive, that then alter the rates of flow. If the negative
feedbacks are strong and swift, the system may quickly settle to
an equilibrium. If, however, there are long delays in the negative
feedbacks, the system may oscillate; if there are positive feedbacks,
the system may become locally unstable (for example, if a wait list
triggers fear of shortages people may order more, lengthening the
wait list still further; see Sterman and Dogan in this issue). Mod-
elers should not presume that a system has an equilibrium or
that any equilibria are stable. Instead, SD modelers represent the
processes through which decision makers respond to situations
in which the states of the system differ from their goals. Model
analysis then reveals whether these decision rules, interacting
with one another and with the physical structure, result in stable
or unstable behavior. Equilibria, and the ability of a system to reach
them, are emergent properties of the dynamic system, not some-
thing to be assumed.

Third, SD stresses the importance of a broad model boundary.
Research shows decisively people’s mental models have narrow
boundaries, omitting most of the feedbacks and interactions that
generate system behavior (see e.g., Sterman, 2000 and the law of
pragnanz, a fundamental principal of gestalt perception, reinforcing
our tendency to simplify the world, e.g., Sternberg, 2003). We tend
to assume cause and effect are closely related in space and time,
ignoring the distal and delayed impacts of decisions. The result is
policy resistance — the tendency to implement policies that fail,
or, more insidiously, that work locally or in the short run, only to
worsen performance elsewhere or later (Meadows, 1989;
Sterman, 2000). Although the sensitivity of model results to uncer-
tainty in parameter values is important, and system dynamics uses
a wide range of tools to assess such uncertainty, both model
behavior and policy recommendations are typically far more sensi-
tive to the breadth of the model boundary than to uncertainty in
parametric assumptions. SD modelers are therefore also trained
to challenge the boundary of models, both mental and formal, to
consider feedbacks far removed from the symptoms of a problem
in space and time. For example, models of traffic flow with exoge-
nous trip origination, destination and departure times typically
show that expanding highway capacity (adding lane-miles, opti-
mizing traffic light timing, etc.) will relieve congestion. Expanding
the model boundary to include endogenous changes in the number
and type of trips, trip timing, transport mode choice, and settle-
ment patterns will show that expanding highway capacity is inef-
fective as people respond to lower initial congestion levels by
taking more trips, driving instead of using mass transit, and moving
farther from their jobs (Sterman, 2000; Chapter 5).

Fourth, SD models are developed and tested through grounded
methods. SD and operations management modelers strive to cap-
ture the interactions among the elements of a system as they exist
in the real world. The resulting models should reflect operational
thinking (Richmond, 1993), that is, they should capture the physical
structure of the system, the institutional structure that governs in-
formation flows and incentives, and the behavioral decision rules of
the actors. These must all be tested empirically. Grounded methods,
in this context, refers to empirical methods spanning the spectrum
from ethnographic work for theory development, to experimental

studies, to formal econometric estimation of model parameters
and confidence intervals, hypothesis testing, and other statistical
tests.

The application of these methodological principles often results
in complex models with dozens of interactions and significant time
delays that integrate multiple data sources of different kinds (e.g.,
quantitative data such as panel datasets, archival data, interviews,
surveys, participant observation, laboratory experiments, and so
on). The result is both a better theory of the structure of the system,
and a formal model. Usually that model cannot be solved in closed
form so must be simulated. Simulation enables rigorous tests of the
ability of the theory to explain the problematic phenomenon and
can be used to evaluate and rank policy options, carry out wide-
ranging parametric and structural sensitivity tests, and optimize
performance.

Much of the leading edge research in operations management is
evolving along similar lines. Increasingly, OM scholars are expand-
ing the boundaries of their models to include behavioral decision
making, explicit consideration of dynamics, and broader model
boundaries including multiple decision makers and organizations
(e.g., supply chain coordination; interactions of operations, market-
ing and pricing) and performance criteria beyond profit maximiza-
tion (e.g., working conditions and environmental sustainability).
With this special issue we highlight relevant developments in sys-
tem dynamics and empirical studies in operations management,
focusing on the increasing alignment between them and comple-
mentarities that may lead to mutual benefit in new research. In
the next sections we single out those areas of collaboration
informed by the articles in this special issue.

2. Supply Chain Management

As discussed above, Forrester (1958, 1961) developed the first
integrated supply chain model, showing how limited information
and bounded rationality interact with the physics of production
and distribution to explain the persistent oscillation in supply
chains and the amplification of disturbances up the chain—pheno-
mena that continue to vex operations managers today. Sterman
(1989) used an experimental setting (the Beer Distribution Game)
to estimate empirically a simple, behaviorally grounded decision
rule, showing how “misperceptions of feedback” — mental models
with narrow boundaries and short time horizons, specifically the
failure to recognize feedbacks, time delays, accumulations and non-
linearities — led to the oscillations and amplification seen in real
supply chains, thus articulating an endogenous behavioral theory
of the causes of the bullwhip effect. Later experimental studies
including Croson and Donohue (2006), Wu and Katok (2006),
Croson et al., 2014, Paich and Sterman, 1993, Diehl and Sterman,
1995; to name just a few, have demonstrated how dysfunctional
behavior arises endogenously through the interplay of human deci-
sion making heuristics with systems characterized by feedbacks,
accumulations, time delays, limited information and other struc-
tural features of supply chains. Others have explored the interac-
tions between feedback and behavioral response to empirically
examine the evolution of trust, or its breakdown, among supply
chain players, for example, Autry and Golicic’s (2010) analysis of
relationship-performance spirals.

In this issue, three papers expand on this experimental tradition.
The paper by Sterman and Dogan uses a laboratory experiment
with the beer game to explore the causes of hoarding (endogenous
accumulation of excessive safety stock) and phantom ordering
(endogenous accumulation of excessive on-order inventory) often
seen in real supply chains as managers seek to defend themselves
against erratic customer demand and poor supplier performance.
The authors analyze the data collected in the experiment of
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