
Artificial Intelligence 174 (2010) 1093–1141

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Logic-based ontology comparison and module extraction,
with an application to DL-Lite

Roman Kontchakov a,∗, Frank Wolter b, Michael Zakharyaschev a

a Department of Computer Science and Information Systems, Birkbeck College London, UK
b Department of Computer Science, University of Liverpool, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 July 2009
Received in revised form 30 April 2010
Accepted 17 June 2010
Available online 23 June 2010

Keywords:
Description logic
Ontology
Module extraction
Entailment
Computational complexity
Uniform interpolation
Forgetting

We develop a formal framework for comparing different versions of ontologies, and
apply it to ontologies formulated in terms of DL-Lite, a family of ‘lightweight’ description
logics designed for data-intensive applications. The main feature of our approach is that
we take into account the vocabulary (= signature) with respect to which one wants
to compare ontologies. Five variants of difference and inseparability relations between
ontologies are introduced and their respective applications for ontology development
and maintenance discussed. These variants are obtained by generalising the notion of
conservative extension from mathematical logic and by distinguishing between differences
that can be observed among concept inclusions, answers to queries over ABoxes, by taking
into account additional context ontologies, and by considering a model-theoretic, language-
independent notion of difference. We compare these variants, study their meta-properties,
determine the computational complexity of the corresponding reasoning tasks, and present
decision algorithms. Moreover, we show that checking inseparability can be automated
by means of encoding into QBF satisfiability and using off-the-shelf general purpose QBF
solvers.
Inseparability relations between ontologies are then used to develop a formal framework
for (minimal) module extraction. We demonstrate that different types of minimal modules
induced by these inseparability relations can be automatically extracted from real-world
medium-size DL-Lite ontologies by composing the known tractable syntactic locality-based
module extraction algorithm with our non-tractable extraction algorithms and using the
multi-engine QBF solver aqme. Finally, we explore the relationship between uniform
interpolation (or forgetting) and inseparability.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In computer science, ontologies are used to provide a common vocabulary (or, in logic parlance, signature) for a domain
of interest, together with a description of certain relationships between terms built from the vocabulary. Ontology languages
based on description logics represent ontologies as ‘TBoxes’ (terminological boxes) containing inclusions between complex
concepts over the vocabulary [2]. An increasingly important application of ontologies is management of large amounts of
data, where ontologies are used to provide flexible and efficient access to repositories consisting of data sets of instances of
concepts and relations. In description logics, such repositories are typically modelled as ‘ABoxes’ (assertion boxes) [2].

* Corresponding author.
E-mail addresses: roman@dcs.bbk.ac.uk (R. Kontchakov), frank@csc.liv.ac.uk (F. Wolter), michael@dcs.bbk.ac.uk (M. Zakharyaschev).

0004-3702/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.artint.2010.06.003

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:roman@dcs.bbk.ac.uk
mailto:frank@csc.liv.ac.uk
mailto:michael@dcs.bbk.ac.uk
http://dx.doi.org/10.1016/j.artint.2010.06.003


1094 R. Kontchakov et al. / Artificial Intelligence 174 (2010) 1093–1141

Developing and maintaining ontologies for this and other purposes is a rather difficult task. When using description logics
(including the description logic based dialects of the Web Ontology Language OWL1), the ontology designer is supported by
efficient reasoning tools for classification, instance checking and a variety of other reasoning tasks. However, this support is
generally recognised to be insufficient when ontologies are developed not as ‘monolithic entities’ but by means of importing,
merging, combining, refining and extending already existing ontologies. In all those cases, reasoning support for analysing
the impact of the respective operation on the ontology would be extremely useful. Typical examples of such ‘unorthodox’
reasoning services include the following:

Comparing versions of ontologies. The standard syntactic diff utility is an indispensable tool for comparing different
versions of text files, and it would be very helpful to have a similar versioning tool for ontologies. However,
a purely syntactic operation of computing the difference between ontologies is of little value [3] because our
concern now is not the syntactic form of the ontologies, but their differing logical consequences. Moreover, instead
of comparing arbitrary logical consequences, it is more useful and informative to compare logical consequences
over the common vocabulary Σ of the versions, or even such consequences regarding a certain subject matter
corresponding to some subvocabulary of Σ . Thus, the reasoning service we need in this case should be able to
compare the logical consequences of different versions of ontologies over some vocabulary Σ .

Ontology refinement. When refining an ontology by adding new axioms, one usually wants to preserve the relationships
between terms of a certain part Σ of its vocabulary. The reasoning service required in such a case is to check
whether the refined ontology has precisely the same logical consequences over Σ as the original one.

Ontology re-use. When importing an ontology, one wants to use its vocabulary Σ as originally defined. However, relation-
ships between terms over Σ may change due to interaction with some axioms in the importing ontology. So again
we need a reasoning service capable of checking whether new logical consequences over Σ are derivable (this
service has been termed safety checking in [4]).

In all these and many other cases, we are interested in comparing logical consequences over some vocabulary Σ that can
be drawn from two different ontologies. This gives rise to the three main notions we investigate in this paper: Σ-difference,
Σ-entailment, and Σ-inseparability. Roughly, the Σ-difference between two ontologies is the set of ‘formulas’ over Σ that
are derivable from one ontology but not from the other; one ontology Σ-entails another one if all Σ-formulas derivable
from the latter are also derivable from the former; and two ontologies are Σ-inseparable if they Σ-entail each other.

In the discussion so far, we have not specified the language from which the logical consequences over Σ are drawn. This
language depends on the application. For example, if one is mainly interested in terminological reasoning and differences
visible in applications that use relationships between concepts, then an appropriate language is the set of all concept
inclusions. The Σ-difference then consists of all concept inclusions over Σ derivable from one ontology but not from the
other. And one ontology Σ-entails another ontology if every concept inclusion over Σ derivable from the latter is derivable
from the former. If, however, one is mainly interested in using ontologies to query instance data, then it is more appropriate
to consider a language for consequences over Σ that reflects, in some way, answers to queries in the signature Σ (or Σ-
queries) over instance data in Σ . In this case, two ontologies should be Σ-inseparable if, and only if, they give the same
answers to every Σ-query in the chosen language for any instance data over Σ . Even this language may be insufficient
for applications where different versions of ontologies are imported into a context ontology, in which case two ontologies
should be deemed Σ-inseparable only if after importing them into another ontology over Σ , the resulting extensions still
give the same answers to Σ-queries.

The first aim of this paper is to give precise formalisations of five variants of Σ-difference, Σ-entailment and Σ-insepa-
rability for ontologies given in the DL-Lite logics DL-LiteN

bool and DL-LiteN
horn . These variants of Σ-difference and Σ-entailment

are obtained by distinguishing between differences visible among concept inclusions, answers to queries over ABoxes, by
taking additional context ontologies into account, and by considering model-theoretic, language-independent notions of
Σ-difference and Σ-entailment.

The DL-Lite family of description logics [5–8] has been originally designed with the aim of providing query access to large
amounts of data via a high-level conceptual (ontological) interface. Thus, the DL-Lite logics result from various compromises
between (i) the necessity of retaining the data complexity of query answering as close as possible to the complexity of
standard database query evaluation and (ii) the desire of having the expressive means for representing various constraints
of data modelling formalisms such as the ER model and UML class diagrams [9]. For example, the logic DL-LiteN

bool [10]
(containing many other DL-Lite logics) can express is-a hierarchies of concepts, disjointness and covering constraints for
concepts, and domain, range and cardinality constraints for binary relations. Instance checking in DL-LiteN

bool is in AC0 for
data complexity (i.e., of the same complexity as database query evaluation); however, answering conjunctive queries is
coNP-complete. On the other hand, DL-LiteN

horn cannot express covering constraints, but boasts AC0 query answering (under
the unique name assumption) [11]. To simplify presentation, in this paper we do not consider DL-Lite logics with role
inclusions, focusing mainly on the impact of the Boolean constructs in concept inclusions as well as number restrictions.

1 http://www.w3.org/2007/OWL/.

http://www.w3.org/2007/OWL/


Download English Version:

https://daneshyari.com/en/article/10320260

Download Persian Version:

https://daneshyari.com/article/10320260

Daneshyari.com

https://daneshyari.com/en/article/10320260
https://daneshyari.com/article/10320260
https://daneshyari.com

