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a  b  s  t  r  a  c  t

Objective:  Our aim  is  to use  multi-dimensional  Bayesian  network  classifiers  in  order  to  predict  the  human
immunodeficiency  virus  type  1 (HIV-1)  reverse  transcriptase  and  protease  inhibitors  given an  input set
of respective  resistance  mutations  that  an  HIV  patient  carries.
Materials  and  methods:  Multi-dimensional  Bayesian  network  classifiers  (MBCs)  are  probabilistic  graph-
ical models  especially  designed  to solve  multi-dimensional  classification  problems,  where  each  input
instance  in  the  data  set  has  to be  assigned  simultaneously  to multiple  output  class  variables  that  are  not
necessarily  binary.  In this paper,  we  introduce  a new  method,  named  MB-MBC,  for  learning  MBCs  from  data
by  determining  the  Markov  blanket  around  each  class  variable  using  the  HITON  algorithm.  Our  method  is
applied  to  both  reverse  transcriptase  and protease  data  sets  obtained  from  the  Stanford  HIV-1  database.
Results:  Regarding  the  prediction  of  antiretroviral  combination  therapies,  the  experimental  study  shows
promising  results  in terms  of  classification  accuracy  compared  with  state-of-the-art  MBC  learning  algo-
rithms. For  reverse  transcriptase  inhibitors,  we  get 71% and  11%  in  mean  and  global  accuracy,  respectively;
while  for protease  inhibitors,  we  get  more  than  84%  and  31%  in  mean  and  global  accuracy,  respec-
tively.  In addition,  the  analysis  of  MBC  graphical  structures  lets us  gain  insight  into  both  known  and
novel  interactions  between  reverse  transcriptase  and  protease  inhibitors  and  their respective  resistance
mutations.
Conclusion:  MB-MBC  algorithm  is  a  valuable  tool  to analyze  the  HIV-1  reverse  transcriptase  and  protease
inhibitors  prediction  problem  and  to  discover  interactions  within  and  between  these  two  classes  of
inhibitors.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

The multi-dimensional classification problem is an extension
of the classical one-dimensional classification problem, where we
have to deal with multiple output class variables rather than a single
output class variable [1]. Formally, the multi-dimensional classifi-
cation problem consists of finding a function f that predicts for each
input instance, given by a vector of m features x = (x1, . . .,  xm), a
vector of d class values c = (c1, . . .,  cd):

f : ˝X1 × · · · × ˝Xm −→ ˝C1 × · · · × ˝Cd

x = (x1, . . . , xm) �−→ c = (c1, . . . , cd)
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where ˝Ci
and ˝Xj

denote the sample spaces of each class variable
Ci, for all i ∈ {1, . . .,  d}, and each feature variable Xj, for all j ∈ {1, . . .,
m}, respectively. Note that, we consider that all class and feature
variables are discrete random variables such that |˝Ci

| and |˝Xj
|

are greater than 1.
When |˝Ci

| = 2 for all i ∈ {1, . . .,  d}, i.e., all class vari-
ables are binary, the multi-dimensional classification problem is
known as a multi-label classification problem [2,3]. In general, a
multi-label classification problem can be easily modeled as a multi-
dimensional classification problem where each label corresponds
to a binary class variable. However, modeling a multi-dimensional
classification problem, that possibly includes non-binary class
variables, as a multi-label classification problem may  require a
transformation over the data set to meet multi-label framework
requirements.

In recent years, the concept of multi-dimensionality has been
introduced in Bayesian network classifiers providing an accurate
modeling of this emerging problem and ensuring interactions
among all variables [1,4–8]. In these probabilistic graphical models,
known as multi-dimensional Bayesian network classifiers (MBCs),
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the graphical structure partitions the set of class and feature
variables into three different subgraphs: class subgraph, feature
subgraph and bridge subgraph, and the parameter set defines the
conditional probability distribution of each variable given its par-
ents.

In this paper, we introduce a novel MBC  learning algorithm
based on Markov blankets. Motivated by the fact that the classi-
fication is unaffected by parts of the structure that lie outside the
Markov blankets of the class variables, we first build the Markov
blanket around each class variable using the well-known HITON
algorithm [9–11], and then we determine edge directionality over
all three MBC  subgraphs. Thanks to this filter and a local approach
to MBC  learning, we can lighten the computational burden of MBC
learning using wrapper algorithms [1,4,5] and provide more accu-
rate MBC  structures.

We  finally apply our Markov blanket MBC  (MB-MBC) algorithm
to the problem of predicting human immunodeficiency virus type 1
(HIV-1) reverse transcriptase and protease inhibitors given an input
set of corresponding resistance mutations that an HIV patient car-
ries. In general, a combination of several antiretroviral drugs should
be repeatedly administered for each patient in order to prevent and
treat the HIV infection.

We  analyze both reverse transcriptase and protease data sets
obtained from the Stanford HIV-1 database [12]. In the reverse
transcriptase data set (respectively, protease data set), the class
variables are ten reverse transcriptase inhibitors (respectively,
eight protease inhibitors) and the feature variables are 38 pre-
defined mutations [13] associated with resistance to reverse
transcriptase inhibitors (respectively, 74 predefined mutations [13]
associated with resistance to protease inhibitors).

In both data sets, all class and feature variables are binary, so
that the problem of predicting HIV-1 reverse transcriptase and
protease inhibitors can be also viewed as a multi-label classi-
fication problem. However, since our approach is general and
can be applied to additional classification problems where class
variables are not necessarily binary, we opt to use the term
multi-dimensional classification as a more general concept. More-
over, contrary to multi-label classification methods, our approach
presents the merit of explicitly modeling the relationships between
all variables through their graphical structure component which, in
our study, may  be useful in further investigating the interactions
among the different inhibitors and resistance mutations.

Experimental results on reverse transcriptase and protease
inhibitors data sets were promising in terms of classification
accuracy compared with state-of-the-art MBC  and multi-label
classification methods, as well as regarding the identification of
interactions among inhibitors and resistance mutations, which
were either consistent with the latest knowledge or not previously
mentioned in the literature.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces Bayesian networks. Section 3 presents MBCs and
briefly reviews state-of-the-art MBC  learning algorithms. Section 4
describes our new MBC  learning approach. Section 5 presents the
experimental study on the HIV-1 reverse transcriptase and pro-
tease inhibitor data sets. Finally, Section 6 sums up the paper with
some conclusions.

2. Background

A Bayesian network [14,15] over a set of discrete random vari-
ables U = {X1, . . .,  Xn}, n ≥ 1, is a pair B = (G,�). G = (V, A) is a
directed acyclic graph (DAG) whose vertices V correspond to vari-
ables in U and whose arcs A represent direct dependencies between
the vertices. � is a set of conditional probability distributions such
that �xi |pa(xi) = p(xi|pa(xi)) defines the conditional probability of

each possible value xi of Xi given a set value pa(xi) of Pa(Xi), where
Pa(Xi) denotes the set of parents of Xi in G.

A Bayesian network B represents a joint probability distribution
over U factorized according to structure G as follows:

p(X1, . . . , Xn) =
n∏

i=1

p(Xi|Pa(Xi)) · (1)

Definition 1 (Conditional independence [14]). Two set of variables
X and Y are conditionally independent given some set of variables
Z, denoted as I(X, Y|Z), iff P(X|Y, Z) = P(X|Z) for any assignment of
values x, y, z of X, Y, Z, respectively, such that P(Z = z) > 0.

Definition 2 (Markov blanket [14]). A Markov blanket of a variable
X, denoted as MB(X), is a minimal set of variables with the following
property: I(X, S| MB(X)) holds for every variable subset S with no
variables in MB(X) ∪ X.

In other words, MB(X) is a minimal set of variables conditioned
by which X is conditionally independent of all the remaining vari-
ables. Under the faithfulness assumption, ensuring that all the
conditional independencies in the data distribution are strictly
those entailed by G, MB(X) consists of the union of the set of parents,
children, and parents of children (i.e., spouses) of X [16].

3. Multi-dimensional Bayesian network classifiers

In this section we  present MBCs, then briefly review the state-
of-the-art methods for learning these models from data.

Definition 3 (Multi-dimensional Bayesian network classifier [1]). An
MBC is a Bayesian network B = (G,�) where the structure G = (V, A)
has a restricted topology. The set of n vertices V is partitioned into
two sets: VC = {C1, . . .,  Cd}, d ≥ 1, of class variables and VX = {X1,
. . .,  Xm}, m ≥ 1, of feature variables (d + m = n). The set of arcs A is
partitioned into three sets AC, AX and ACX, such that:

• AC⊆ VC× VC is composed of the arcs between the class variables
having a subgraph GC = (VC, AC ) – class subgraph – of G induced
by VC.
• AX⊆ VX× VX is composed of the arcs between the feature variables

having a subgraph GX = (VX, AX ) – feature subgraph – of G induced
by VX.
• ACX⊆ VC× VX is composed of the arcs from the class variables to

the feature variables having a subgraph GCX = (V, ACX ) – bridge
subgraph – of G induced by V [4].

Depending on the graphical structures of the class and feature
subgraphs MBCs can be divided into several families. These fami-
lies can be denoted as <class subgraph structure>-<feature
subgraph structure> MBCs, where the possible structures of
each subgraph are: empty, tree, polytree, or DAG [4]. In this paper,
we do not consider any constraints on the subgraph structures of
the learned MBCs, i.e., any possible structure type is allowed for
either class or feature subgraphs.

Classification with an MBC  under a 0–1 loss function is
equivalent to solving the most probable explanation (MPE) prob-
lem, which consists of finding the most likely instantiation of
the vector of class variables c∗ = (c∗1, . . . , c∗

d
) given an evidence

about the input vector of feature variables x = (x1, . . .,  xm).
More formally, for a given observed evidence x, we have to
determine

c∗ = (c∗1, . . . , c∗d) = arg max
c1,...,cd

p(C1 = c1, . . . , Cd = cd|x) · (2)
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