
Soar-RL: integrating reinforcement learning with Soar

Action editor: Christian Schunn

Shelley Nason *, John E. Laird

University of Michigan, 1101 Beal Avenue, Ann Arbor, MI 48109-2110, USA

Received 16 September 2004; accepted 16 September 2004

Available online 28 October 2004

Abstract

In this paper, we describe an architectural modification to Soar that gives a Soar agent the opportunity to learn sta-

tistical information about the past success of its actions and utilize this information when selecting an operator. This

mechanism serves the same purpose as production utilities in ACT-R, but the implementation is more directly tied to

the standard definition of the reinforcement learning (RL) problem. The paper explains our implementation, gives a

rationale for adding an RL capability to Soar, and shows results for Soar-RL agents� performance on two tasks.

� 2004 Elsevier B.V. All rights reserved.

Keywords: Soar; Reinforcement learning; Cognitive architectures

1. Introduction

The Soar architecture has been used extensively,

both for developing AI applications and cognitive

models. One of its strengths has been the ability to

efficiently represent anduse large bodies of symbolic

knowledge to solve a wide variety of problems using

many different methods. It dynamically combines

available knowledge for decision-making, and can
dynamically create subgoals whenever the knowl-

edge for a decision is incomplete or inconsistent.

Soar can also compile the problem solving in sub-
goals into rules, using a process called chunking, so

that over time, problem solving in subgoals is re-

placed by rule-driven decision making. Chunking

has proved to be extremely versatile because it stores

away whatever problem solving is performed in a

subgoal, allowing Soar programs to learn using a

wide variety of methods, including explanation-

based learning, macro-operator learning, strategy
acquisition, learning by instruction, and many oth-

ers. In general, Soar�s processing is symbolic, and

although that is sufficient (and necessary) for a wide

variety of cognitive activities, it is inadequate (or at

the very least extremely inefficient) when encoding

probabilities and numeric rewards.

1389-0417/$ - see front matter � 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.cogsys.2004.09.006

* Corresponding author.

E-mail addresses: snason@umich.edu (S. Nason), laird@u-

mich.edu (J.E. Laird).

Cognitive Systems Research 6 (2005) 51–59

www.elsevier.com/locate/cogsys

mailto:snason@umich.edu 
mailto:laird@umich.edu 
mailto:laird@umich.edu 


While Soar has strengths in knowledge-rich

symbolic reasoning and learning and weaknesses

in knowledge-lean, statistical-based learning, the

strengths and weaknesses of reinforcement learn-
ing (RL) techniques are the reverse. They are

successful at capturing statistical regularities re-

lated to the expected reward that an agent will

receive, but cannot encode and effectively use

large bodies of symbolic knowledge. In this pa-

per, we will present an initial integration of rein-

forcement learning with Soar, enriching the

learning capabilities as well as the representation
of knowledge in Soar, while at the same time

developing a unique integration of reinforcement

learning with symbolic, knowledge-rich reason-

ing. Specifically, Soar supports dynamic hierar-

chical task-decomposition, meta-reasoning, and

the ability to enrich the state descriptions

through internal abstractions. All of these capa-

bilities both complicate and enrich reinforcement
learning. This integration requires structural

changes to the Soar architecture and we will refer

to the unification as Soar-RL.

In the remainder of this paper, we first present a

simplified description of Soar and the extensions

we have made to incorporate reinforcement learn-

ing. We then demonstrate the implementation on

two simple tasks, highlighting the contributions
RL makes to Soar, as well as the capabilities

Soar-RL provides beyond standard reinforcement

learning. We also compare and contrast Soar-RL

to ACT-R, which incorporates a rule-tuning mech-

anism, comparable to reinforcement learning.

Finally, we outline future directions and offer our

conclusions.

2. Soar

The structure of Soar�s memories is shown in

Fig. 1. Soar has a declarative working memory,

which contains its representation of the current sit-

uation using labeled graph structures, organized in

a hierarchy of states/goals. All long-term proce-
dural knowledge is encoded as production rules.

Whenever a rule�s conditions match working mem-

ory, the rule is fired and its actions performed. Ac-

tions may involve adding or removing structures

from working memory. They may also create pref-

erences used to select operators.

Soar�s learning mechanism, chunking, monitors

problem solving and automatically creates new

rules, which are added to long-term memory dur-
ing execution.

Soar�s basic reasoning cycle is illustrated in

Fig. 2.

1. Input: Changes to perception are processed and

Soar�s perceptual buffer in working memory is

updated.

2. State elaboration: Rules that newly match are
fired in parallel to retrieve relevant information.

For example, in a robotic task, a rule might test

the distance to the object and the robot�s avail-
able reach and determine if the object is within

reach.

3. Proposing operators: Rules can propose opera-

tors by creating acceptable preferences for spe-

cific operators. In general, the rules� conditions
test the situation so that an operator is pro-

posed only when it is relevant.

4. Comparing and evaluating operators: Rules can

test the proposed operators and other features

of the situation and create preferences, which

make assertions about the absolute or relative

merit of the operators. Multiple preferences

can be generated for a single operator.
5. Selecting the current operator: The preferences

are evaluated to select the current operator. If

the preferences are insufficient or contradictory,

an impasse ensues and Soar creates a substate in

which the goal is to resolve that impasse. This

provides Soar with meta-reasoning so that it

can reflect on its own processing.

Long-term Procedural 
Memory

Production Rules

Short-term Declarative
Memory

Decision
Procedure

Rule
Matcher

GUI

…

Input

Output

Chunking

Fig. 1. Soar�s structure.

52 S. Nason, J.E. Laird / Cognitive Systems Research 6 (2005) 51–59



Download English Version:

https://daneshyari.com/en/article/10321015

Download Persian Version:

https://daneshyari.com/article/10321015

Daneshyari.com

https://daneshyari.com/en/article/10321015
https://daneshyari.com/article/10321015
https://daneshyari.com

