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a b s t r a c t

Recently, the convolution integral-based multivariable grey model (GMC(1,N)) has attracted considerable
interest due to its significant performance in time series forecasting. However, this promising technique
may occasionally confront ill-posed problem, which is a plague ignored by most researchers. In this
paper, a regularized GMC(1,N) framework (R-GMC(1, N)) is proposed to estimate the grey coefficients
in case there exists potential ill-posed problem. More specifically, we adopt two state-of-the-art regular-
ization methods, i.e. the Tikhonov regularization (TR) and truncated singular value decomposition
(TSVD), together with two regularization parameters detection methods, i.e. L-curve (LC) and generalized
cross-validation (GCV), to identify the stable solutions. Numerical simulations on industrial indicators of
China demonstrate that our methods yield more accurate forecast results than the existing GMC(1,N).

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Among all forecast techniques being developed over the last
few decades, the grey model and its alternatives have emerged
as powerful tools in various application domains, such as economy
(Evans, 2014; Huang & Jane, 2009; Ma, Zhu, & Wang, 2013), indus-
try (Benítez, Paredes, Lodewijks, & Nabais, 2013; Hsu, 2011; Hsu,
Liou, & Chuang, 2013), society (Jin, Zhou, Zhang, & Tentzeris,
2012; Pao, Fu, & Tseng, 2012; Wei, Zhou, Wang, & Wu, 2014) and
engineering (Chen & Wang, 2012; He, Liu, & Chen, 2012; Ye, Lu,
& Liu, 2013). Compared with conventional statistical models, the
grey model has three superiorities: (1) requiring few sample size;
(2) providing convenient calculation; (3) achieving accurate
prediction accuracy. In fact, the grey model is a special differential
equation, according to which the output data can be significantly
predicted. The general form of grey model can be expressed as
GMðu;/Þ, where u is the order of differential equation and /
denotes the number of variables. In the literature, two widespread
grey models are the first-order one-variable GM(1,1) (u ¼ 1;
/ ¼ 1) and the multivariable one, i.e. GM(1,N) (u ¼ 1;/ ¼ N).

With regard to GM(1,1), much work has been carried out to
improve the grey prediction performance since it was pioneered
by Deng (1982). Two remarkable aspects can be highlighted: the-
ory and application. Theoretically, several improved versions have
been proposed, including the hybrid one (Xia, Chen, Zhang, &
Wang, 2008), discrete one (Xie & Liu, 2009), intelligent algo-
rithm-based ones (Bahrami, Hooshmand, & Parastegari, 2014;
Hsu, 2010), least-squares-based one (Xu, Tan, Tu, & Qi, 2011),
smart adaptive one (Truong & Ahn, 2012) as well as the fractional
order-based one (Xiao, Guo, & Mao, 2014). On the other hand, the
applications of GM(1,1) are also enormous, such as accurate reli-
ability prediction (Li, Masuda, Yamaguchi, & Nagai, 2010), fashion
color forecasting (Yu, Hui, & Choi, 2012), hyperspectral feature
extraction (Yin, Gao, & Jia, 2013), and end effects mitigation in
our previous works (He, Shen, & Wang, 2012; He et al., 2012).

As for GM(1,N), it has also drawn great attention recently due to
its convenient calculation and accurate results in multi-factor fore-
casting. Intensive modified models have been developed since it
was introduced by Deng et al. (1988) in the 1980s. One of the wide-
spread models is GMC(1,N) (Wu & Chen, 2005; Tien, 2012), which
is motivated by the utilization of convolution integral. In greater
detail, note that it is inaccurate to assume the sum of the first-
order accumulated generating operation (1-AGO) data (i.e.PN�1

i¼1 bix
ð1Þ
iþ1ðtÞ in Eq. (1)) as a constant in GM(1,N), the GMC(1,N)

takes
PN�1

i¼1 bix
ð1Þ
iþ1ðtÞ as a variable and detects the convolution

integral by trapezoidal rule. Much work has been carried out in
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the literature to enhance the prediction accuracy of GMC(1,N)
since its appearance. For instance, Tien (2008, 2009, 2011) is ded-
icated to the refinement of GMC(1,N) and proposes plenty of
improved models, which are mainly associated with the calcula-
tion of grey derivative and selection of initial condition.
Abdulshahed, Longstaff, Fletcher, and Myers (2013) build a thermal
model by integrating artificial neural networks (ANNs) and
GMC(1,N). The thermal model can improve the self-learn and
self-adapt ability of GMC(1,N) and be able to extract realistic gov-
erning laws of the system with limited data pairs. Wang and Pei
(2014) introduce N interpolation coefficients into the background
series calculation and determine the optimized coefficients by par-
ticle swarm optimization algorithm (PSO). This method can
improve the modelling accuracy by providing more flexible back-
ground series of grey derivation. Moreover, Wang (2014) proposes
nonlinear GMC(1,N) by adding power exponent to the 1-AGO of
every relative data series. Compare to traditional GMC(1,N), the
nonlinear GMC(1,N) can reflect better relationship between cause
and effect. On the other hand, considerable applications has sprung
up in recent years. For instance, Hsu (2009) forecasts the inte-
grated circuit output inspired by GM(1,N). Tien (2008, 2009,
2011, 2012) utilizes the improved GMC(1,N) for indirect measure-
ment of tensile strength. Zhang and Hu (2013) build product
quality prediction model for multi-varieties and small-batch pro-
duction based on GMC(1,N). In our previous work (He, Wang,
Shen, & Wang, 2013), the GMC(1,3) (N ¼ 3) is adopted to mitigate
the boundary effects of bi-dimensional empirical mode decompo-
sition (BEMD).

Although many efforts have been devoted to improve the pre-
diction performance of GMC(1,N), till now, there is no research
which explicitly investigates its ill-posed problem. In general, ill-
posed problem is an essential drawback of GMC(1,N), which may
occasionally appear in detecting the grey coefficients. In case there
exists ill-posed problem, the traditional least-squares solution of
grey coefficients will be inaccurate and the forecast error of
GMC(1,N) will increase sharply. As a consequence, it is very diffi-
cult to gain satisfactory forecast results, which would seriously
impede the wide application of GMC(1,N). According to above
analysis, the ill-posed problem of GMC(1,N) is a challenging issue
that needs to be further investigated. In this paper, we propose a
regularization framework (i.e. R-GMC(1,N)) to tackle this defi-
ciency. That means, regularization methods (Hansen, 2007), which
can solve ill-posed problem by investigating a tradeoff between the
constructed new problem one can solve reliably and the solution
that is close to the desired one, are adopted to estimate stable grey
coefficients in ill-posed scenario. It is notable that two state-
of-the-art regularization methods are the Tikhonov regularization
(TR) (Tikhonov, Arsenin, & John, 1977) and truncated singular
value decomposition (TSVD) (Hansen, 1987), whose regularization
parameters can be evaluated by L-curve (LC) (Hansen & O’Leary,
1993) or generalized cross-validation (GCV) (Hansen, 1998). Inte-
grating the regularization methods (i.e. TR and TSVD) with param-
eters detection strategies (i.e. LC and GCV), four hybrid methods
can be revealed: LC-TR, GCV-TR, LC-TSVD and GCV-TSVD, by which
different R-GMC(1,N) methods can be formed.

Compared to the existing literature, the main novelties and con-
tributions of this paper lie in the following two aspects.

� This paper proposes R-GMC(1,N) to estimate stable grey coeffi-
cients (see Fig. 2). Unlike existing GMC(1,N), which calculates
the grey coefficients by least-squares method all the time, the
proposed R-GMC(1,N) utilizes regularization methods to iden-
tify the grey coefficients in ill-posed scenario.
� This paper proposes four versions of R-GMC(1,N) based on var-

ious regularization methods. In greater detail, RLC-TR-GMC(1,N),
RGCV-TR-GMC(1,N), RLC-TSVD-GMC(1,N) and RGCV-TSVD-GMC(1,N),

which are developed from the aforementioned hybrid regulari-
zation methods (i.e. LC-TR, GCV-TR, LC-TSVD and GCV-TSVD),
are proposed in this paper. Moreover, the effectiveness of the
proposed methods is assessed by two numerical tests on indus-
trial indicators of China (see Section 4).

The outline of this paper is organized as follows. The GMC(1,N)
and its ill-posed problem are illustrated in Section 2. This is fol-
lowed by a detailed description of our proposed regularization
framework in Section 3. Numerical results and discussions are sta-
ted in Section 4, and the conclusions are drawn in Section 5.

2. GMC(1,N) and its ill-posed problem

In this section, we illustrate the main steps of GMC(1,N) and
discuss the causes of ill-posed problem. Since the details of
GMC(1,N) can be found in Wu and Chen (2005) and Tien (2012),
we only sketch the core steps of this method briefly.

Step 1: Obtain original series. Assume the original characteristic

data series and relative data series are Xð0Þ1 ¼ fx
ð0Þ
1 ð1þ rÞ;

xð0Þ1 ð2þ rÞ; . . . ; xð0Þ1 ðnþ rÞg and Xð0Þi ¼ fx
ð0Þ
i ð1Þ; x

ð0Þ
i ð2Þ; . . . ; xð0Þi ðnÞ; . . . ;

xð0Þi ðnþmÞg; i ¼ 2;3; . . . ;N, respectively, where r is the period of
delay, n gives the length of original characteristic data series and
m denotes the number of entries to be predicted.

Step 2: Execute 1-AGO. Generate the 1-AGO sequence Xð1Þ1 ¼
fxð1Þ1 ð1þ rÞ; xð1Þ1 ð2þ rÞ; . . . ; xð1Þ1 ðnþ rÞg and Xð1Þi ¼ fx

ð1Þ
i ð1Þ; x

ð1Þ
i ð2Þ;

. . . ; xð1Þi ðnÞ; . . . ; xð1Þi ðnþmÞg; i ¼ 2;3; . . . ;N based on Xð0Þi ; i ¼ 1;2;

. . . ;N, where xð1Þ1 ðkþ rÞ ¼
Pk

l¼1xð0Þ1 ðlþ rÞ; k ¼ 1;2; . . . ;n and

xð1Þi ðkÞ ¼
Pk

l¼1xð0Þi ðlÞ; k ¼ 1;2; . . . ;nþm; i ¼ 2;3; . . . ;N. Additionally,
the GMC(1,N) can be modeled by

dxð1Þ1 ðt þ rÞ
dt

þ axð1Þ1 ðt þ rÞ ¼
XN�1

i¼1

bix
ð1Þ
iþ1ðtÞ þ bN;

t ¼ 1;2; . . . ;nþm ð1Þ

where a and bi; i ¼ 1;2; . . . ;N are the grey developmental coefficient
and the associated coefficients, respectively.

Step 3: Calculate grey coefficients. Notably that Eq. (1) can be
approximately rewritten as
Bj ¼ Y ð2Þ

where j ¼ a b1 b2 . . . bN½ �T;Y ¼ xð0Þ1 ð2þ rÞ xð0Þ1 ð3þ rÞ
h

� � �
xð0Þ1 ðnþ rÞ�T and

B¼

�1
2 xð1Þ1 ð1þrÞþxð1Þ1 ð2þrÞ
� �

1
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� �

��� 1
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� �

1

�1
2 xð1Þ1 ð2þrÞþxð1Þ1 ð3þrÞ
� �

1
2 xð1Þ2 ð2Þþxð1Þ2 ð3Þ
� �

��� 1
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� �
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.

�1
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� �
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;

ð3Þ

we can evaluate the grey coefficient j by least-squares method

j ¼ BTB
� ��1

BTY ð4Þ

Step 4: Detect predicted value of Xð1Þ1 . Unlike GM(1,N), which

treats the
PN�1

i¼1 bix
ð1Þ
iþ1ðtÞ of Eq. (1) as a constant (actually that is

inaccurate), GMC(1,N) regards that term as a variable in terms of

defining f ðtÞ ¼
PN�1

i¼1 bix
ð1Þ
iþ1ðtÞ þ bN . Subsequently, the convolution

integral
R t

1 e�aðt�sÞf ðsÞds can be exploited by trapezoidal rule, and

the predicted value of xð1Þ1 ðt þ rÞ; t ¼ 2;3; . . . ;nþm yields

x̂ð1Þ1 ðt þ rÞ ¼ xð0Þ1 ð1þ rÞe�aðt�1Þ þ 1
2

e�aðt�1Þf ð1Þ

þ
Xt�1

s¼2

e�aðt�sÞf ðsÞ
� �

þ 1
2

f ðtÞ ð5Þ

Z. He et al. / Expert Systems with Applications 42 (2015) 1806–1815 1807



Download English Version:

https://daneshyari.com/en/article/10321712

Download Persian Version:

https://daneshyari.com/article/10321712

Daneshyari.com

https://daneshyari.com/en/article/10321712
https://daneshyari.com/article/10321712
https://daneshyari.com

