
A comparison of some soft computing methods for software fault
prediction

Ezgi Erturk a, Ebru Akcapinar Sezer b,⇑
a The Scientific and Technological Research Council of Turkey (TUBITAK), Software Technologies Research Institute, Ankara, Turkey
b Hacettepe University, Department of Computer Engineering, 06800 Ankara, Turkey

a r t i c l e i n f o

Article history:
Available online 23 October 2014

Keywords:
Software fault prediction
McCabe metrics
Adaptive neuro fuzzy systems
Artificial Neural Networks
Support Vector Machines

a b s t r a c t

The main expectation from reliable software is the minimization of the number of failures that occur
when the program runs. Determining whether software modules are prone to fault is important because
doing so assists in identifying modules that require refactoring or detailed testing. Software fault predic-
tion is a discipline that predicts the fault proneness of future modules by using essential prediction
metrics and historical fault data. This study presents the first application of the Adaptive Neuro Fuzzy
Inference System (ANFIS) for the software fault prediction problem. Moreover, Artificial Neural Network
(ANN) and Support Vector Machine (SVM) methods, which were experienced previously, are built to
discuss the performance of ANFIS. Data used in this study are collected from the PROMISE Software
Engineering Repository, and McCabe metrics are selected because they comprehensively address the pro-
gramming effort. ROC-AUC is used as a performance measure. The results achieved were 0.7795, 0.8685,
and 0.8573 for the SVM, ANN and ANFIS methods, respectively.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Software quality has experienced an increase in demand in the
past ten years because of the significant role that software systems
play in daily human life. Tolerance of unpredictable software
behavior during run time is decreasing because of the high cost
of this type of behavior and because it may cause irrecoverable sit-
uations. As a result, studies on software quality attempt to increase
the quality of the software development life cycle and produce
high quality software systems. The major expectation from high
quality software is its reliability; therefore, the number of failures
that occur when the program is running must be minimized to
ensure reliable software. The main causes of the failures are faults
generated by errors in human action. Errors, failures, faults and
defects are defined as follows. An error is a missing human action
or a human action that embeds particular mistakes into the prod-
uct. For example, mistakes made during code implementation are
accepted as errors. Failure occurs when the behavior of the soft-
ware does not meet user expectations. A fault is an incorrect step,
code, process, data definition or physical defect that occurs in hard-
ware or software. A fault is the primary cause of failures in a soft-
ware program. For example, the software can go into an

unexpected state because of a programmer mistake and, as a
result, this type of fault may cause a failure. The term defect is used
as a general expression of error, failure and fault. In summary,
errors may cause faults and faults may cause failures when the
software program runs, and the term defect includes all of these
terms.

Determination of fault-prone software modules is an important
process because it helps to identify modules that require refactor-
ing or detailed testing. In this way, more qualified software prod-
ucts may be developed. Software fault prediction is a discipline
that predicts the fault proneness of future modules using essential
prediction metrics and historical fault data. By considering soft-
ware fault prediction systems, a project schedule can be planned
more efficiently, especially for testing and maintenance phases.
The benefits of software fault prediction are listed below (Catal,
2011).

� The test process can be refined, thus increasing system quality.
� Specifying modules that require refactoring during the mainte-

nance phase is possible.
� Applying software fault prediction using class-level metrics

during the design phase enables selecting the best of the design
alternatives.
� Software fault prediction provides stability and high assurance

of the software system.

http://dx.doi.org/10.1016/j.eswa.2014.10.025
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +90 3122977500; fax: +90 3122977502.
E-mail addresses: erturkezgi@gmail.com (E. Erturk), ebruakcapinarsezer@gmail.

com (E.A. Sezer).

Expert Systems with Applications 42 (2015) 1872–1879

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.10.025&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.10.025
mailto:erturkezgi@gmail.com
mailto:ebruakcapinarsezer@gmail.com
mailto:ebruakcapinarsezer@gmail.com
http://dx.doi.org/10.1016/j.eswa.2014.10.025
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


� Software fault prediction can reduce the time and effort spent in
the code review process.

Because of these benefits, predicting software faults becomes an
important research problem. In fact, the aim of prediction is valid
and available in many different areas, and many proposed predic-
tion or classification methods exist: decision trees, neural net-
works, vector machines, logistic regression, etc. Moreover, some
of these methods are applied to the software fault prediction prob-
lem listed in Section 2. This study selects three different soft com-
puting methods—Adaptive Neuro Fuzzy Inference System (ANFIS),
Support Vector Machine (SVM), and Artificial Neural Network
(ANN)—to build software fault prediction models and compares
their performance results. In fact, previous studies have applied
ANN and SVM to this problem (e.g. Thwin and Quah (2003),
Gondra (2008), Mahaweerawat, Sophatsathit, Lursinsap, and
Musílek (2004), Malhotra (2014), Xing, Guo, and Lyu (2005)). How-
ever, ANFIS has not been applied to this problem using a compar-
ative approach.

ANFIS is a powerful prediction method that combines learning
ability and expert knowledge and achieves many successful results
in predicting problems in different areas (e.g. Daoming and Jie
(2006), Lo (2003), Najah, El-Shafie, Karim, and Jaafar (2012),
Perez, Gonzalez, and Dopico (2010), Pradhan, Sezer, Gokceoglu,
and Buchroithner (2010), Sezer, Pradhan, and Gokceoglu (2011)).
As emphasized in Catal and Diri (2009) selected algorithm for iden-
tification of the faulty software modules is important as much as
the selected parameters. At this point we contribute the solution
methods of this problem by proposing ANFIS. The difference
between ANFIS and the other data driven methods (ANN, SVM,
and decision tree (DT)) is that ANFIS uses expert knowledge to
build the model and uses data to optimize it. Actually, modeler
has to decide which parameters are used regardless of the
employed method when he/she uses pure data driven methods.
However, modeler also has to specify the membership function
type and number, or fuzzy sets for each parameter while modeling
with ANFIS and this information directly specify the way of fuzzi-
ness or vagueness handling in the predictive model. For example, if
‘‘line of code (loc)’’ parameter is used while modeling with ANN, its
data format and its relationship between the output parameter are
considered. However, if the predictive method is ANFIS, in addition
to these considerations, expert should specify the number of fuzzy
sets which will be used for ‘‘loc’’ parameter. If it is specified as 2
(i.e. low, high) with triangular membership function, it means that
vagueness of the model specified at the maximum level. If 3 fuzzy
sets (i.e. low, moderate, high) are used in the form of triangular
membership function, vagueness of the model decreases according
to previous case. The decisions of the expert are based on the nat-
ural distribution of the values of parameter, the natural class num-
bers of the parameter, degree of fuzziness while passing one class
to other and the relationship between the classes of input and out-
put parameters. Consequently, it is possible to say that modeling
with ANFIS requires more awareness about the conditions and
results embedded in the data. Thus, use of each parameter is
decided one by one, not as a whole parameter set. As a result,
use of ANFIS becomes important because of three reasons (i) ANFIS
is a powerful predictive method but, it has not been experienced
before for software fault prediction problem (ii) modeling with
ANFIS triggers detailed reconsideration of the each input parame-
ter even if it has been commonly used in previous studies (iii)
properties of ANFIS model gives some valuable information (best
class number for each parameter, vagueness degree, distribution
of the data, most effective rules) to the modeler of fully expert
based systems. In other words, ANFIS is easier way of experimen-
tation for an expert than other machine learning methods to opti-
mize his/her knowledge.

Based on these reasons, the ANFIS is employed to predict soft-
ware faultiness for the first time in this study and also two of com-
monly used machine learning methods (ANN and SVM) are
employed to make comparison between ANFIS’s and their perfor-
mances. This study uses McCabe metrics (Thomas, 1976) as soft-
ware features and the dataset of the experiments is created by
composing projects using the PROMISE Software Engineering
Repository (Sayyad & Menzies (2005); Promise Software
Engineering Repository Public Datasets (2013)). In experimenta-
tion step, all McCabe metrics (loc, v(g), ev(g), and iv(g)) are used
in models and performance of them are evaluated at first. After
examination of the faulty cases, experiments which use 3 McCabe
metrics (loc, v(g), and iv(g)) are organized at second. The models’
performances are compared using area under ROC curve (AUC).
The performance results show that ANFIS is a competitive and
strong method to solve this problem and encourages us to conduct
further studies. Additionally, use of 3 McCabe metrics is proposed
instead of all them. Experimental results show SVM and ANFIS
achieve better results with 3 parameters than 4.

2. Related works

The studies relating with the software fault prediction problem
are summarized here into two parts such as older studies pub-
lished before the year of 2013 and the studies presented in last
two years. Catal (2011) surveyed 90 papers on software fault pre-
diction that were published between 1990 and 2009. The most
important contribution of the study was that it provides a guide
for researchers on software metrics, methods used for software
fault prediction, datasets, and performance evaluation criteria.
Catal, Sevim, and Diri (2011) developed an Eclipse-based software
fault prediction tool using machine learning and statistical tech-
niques. The objectives of the study were to both practically and
theoretically predict faults in software programs. They preferred
the Naive Bayes algorithm for its high performance. Catal and
Diri (2009) investigated the effect of dataset size, metrics sets
and feature selection techniques on software fault prediction prob-
lems, which were previously not researched in this research area.
They used the Random Forest algorithm and Artificial Immune Sys-
tems as machine learning methods and the PROMISE repository as
a dataset. As a result, they determined that the selected algorithm
is more important than the selected metrics. This finding strongly
supports employing the ANFIS method for this problem.
Mahaweerawat, Sophatsathit, Lursinsap, and Musílek (2006)
developed an enhanced model named MASP to predict and identify
faults in object-oriented software systems. The MASP model can
filter appropriate metrics for particular fault types. The aim of
the Vandecruys et al. (2008) study was to efficiently predict faulty
software modules and support software development by investi-
gating software repositories using data mining techniques (ant col-
ony optimization-based AntMiner+). Alsmadi and Najadat (2011)
aimed to predict fault-prone modules and to determine relation-
ships among them. They considered that attributes with high cor-
relations between them could negatively affect each other. Hu, Xie,
Ng, and Levitin (2007) proposed correcting faults in addition to
predicting faulty parts of software. For this purpose, they itera-
tively applied neural networks and a genetic algorithm. The
genetic algorithm increased the performance of the prediction
model. Gondra (2008) attempted to show which software metric
was more important for fault prediction and used ANN and SVM
methods for this purpose. Furthermore, he compared the results
of the models built using ANN and SVM. Zimmermann, Premraj,
and Zeller (2007) aimed to develop a fault prediction model that
ran on versions 2.0, 2.1 and 3.0 of Eclipse by constructing a fault
database. Zhou and Leung (2006) studied the prediction of faults
that had high and low priority using class-level metrics and logistic

E. Erturk, E.A. Sezer / Expert Systems with Applications 42 (2015) 1872–1879 1873



Download	English	Version:

https://daneshyari.com/en/article/10321719

Download	Persian	Version:

https://daneshyari.com/article/10321719

Daneshyari.com

https://daneshyari.com/en/article/10321719
https://daneshyari.com/article/10321719
https://daneshyari.com/

