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a b s t r a c t

A High–order algorithm for Multi-Variable Fuzzy Time Series (HMV-FTS) is presented based on fuzzy
clustering to eliminate some well-known problems with the existing FTS algorithms. High-order algo-
rithms can handle only one-variable FTS and multi-variable algorithms can handle only one-order FTS.
HMV-FTS does both tasks simultaneously. FTS algorithms cannot incorporate existing information about
future value of a variable in the forecasting process while HMV-FTS can. Defuzzification of the fuzzy value
of a forecast to cluster centers or midpoint of intervals and use of intervals are other controversial prob-
lems with the existing FTS algorithms. These are eliminated by constructing fuzzy sets from partition
matrices and letting each data point to contribute in defuzzification based on its membership grade in
the fuzzy sets. In multi-variable FTS algorithms, one variable is considered as main variable which is fore-
casted and the other variables are secondary; while HMV-FTS treats all variables equally and more than
one variable can be forecasted at the same time. It is shown that HMV-FTS is suitable for system identi-
fication, forecasting and interpolation. This algorithm is more accurate than popular FTS algorithms and
other forecasting tools and systems such as ANFIS, Type II fuzzy model and ARIMA model.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Fuzzy Time Series (FTS) is first introduced in Song and Chissom
(1993a, 1993b, 1994) as a forecasting tool for enrollments. Since
then, it has been subject of numerous researches in the area of
forecasting especially when the available data is imprecise, vague
and without identifiable trend. Initial structure of FTS is highly
complex and computationally expensive. It is changed into a more
efficient model in Chen (1996) which is generally accepted by
researchers and is the common form of FTS. This model is used
in many forecasting problems including, shipping index (Duru,
2010), pollution (Domanska & Wojtylak, 2012), university enroll-
ments (Aladag, Basaran, Egrioglu, Yolcu, & Uslu, 2008), rice produc-
tion (Singh, 2007a), stock exchange (Huarng & Yu, 2006a; Huarng,
Yu, & Hsu, 2007; Park, Lee, Song, & Chun, 2010; Qiu, Liu, & Wang,
2012; Wong, Tu, & Wang, 2010), etc.

FTS algorithms usually employ intervals of universe of dis-
course to construct fuzzy sets. Appropriate intervals and their
lengths are always challenging problems and researchers attempt
to improve accuracy of FTS by selecting proper intervals and
adjustment of their lengths. For example, Particle Swarm

Optimization (PSO) is used to find proper intervals and adjust
interval lengths (Huang et al., 2011; Kuo et al., 2009), Tabu Search
and fuzzy inference systems are used to find length of intervals
(Avazbeigi, Hashemi Doulabi, & Karimi, 2010). Some other tech-
niques for determining best intervals and interval lengths are
found in (Egrioglu, Aladag, Yolcu, Uslu, & Basaran, 2010; Wang,
Liu, & Pedrycz, 2013). Some FTS algorithms are based on fuzzy clus-
tering in which no interval is used and instead the data is fuzzified
to the cluster centers (Bulut, Duru, & Yoshida, 2012; Chen &
Tanuwijaya, 2011; Cheng, Cheng, & Wang, 2008; Egrioglu,
Aladag, Yolcu, Uslu, & Erilli, 2011; Li, Kuo, Cheng, & Chen, 2010,
2008). The most important advantage of these algorithms over
interval based algorithms is that no interval is required. An algo-
rithm is presented to handle high order FTS using consecutive dif-
ferences of the algorithm parameters instead of fuzzy clustering
and intervals (Singh, 2007a, 2007b, 2008, 2009).

There are two important issues, namely, number of variables in
FTS and order of FTS algorithm that are always controversial and
no definite solution is known for them. Multi-variable algorithms
are presented for the former (Bulut et al., 2012; Chen &
Tanuwijaya, 2011; Cheng et al., 2008; Egrioglu, Aladag, Yolcu,
Basaran, & Uslu, 2009; Huarng et al., 2007; Yu & Huarng, 2008);
and high-order algorithms are proposed for the latter (Aladag
et al., 2008; Chen, 2002; Chen, Cheng, & Teoh, 2008; Egrioglu
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et al., 2009, 2010; Park et al., 2010; Singh, 2009; Teoh, Chen, Cheng,
& Chu, 2009).

High-order algorithms handle only one-variable FTS and multi-
variable algorithms handle only one-order FTS. The objective of
this paper is to present a High-order Multi-Variable algorithm for
Fuzzy Time Series (HMV-FTS). Problem of intervals and their
lengths are still studied and their roles are not fully understood.
We use fuzzy clustering algorithms to construct fuzzy sets of
HMV-FTS and avoid intervals and their lengths. In interval based
FTS algorithms, mid-point of the interval is considered as defuzz-
ified value of fuzzy forecast and other members of the interval play
no role in defuzzification. In clustering based FTS algorithms, fuzzy
forecast is defuzzified to the cluster centers without any contribu-
tion of members of universe of discourse and their membership
grades in the cluster. We use defuzzification of the fuzzy set
instead of cluster centers to get crisp value of forecast. In this
approach, each member of the universal set of each variable con-
tributes to defuzzification depending on its membership grade in
the cluster.

Rest of the paper is organized as follows: Basic definitions and
algorithms of FTS are discussed in Section 2. In Section 3, HMV-
FTS algorithm is presented. Examples of Identification of systems
and forecasting of processes are presented in Sections 4 and con-
cluding remarks are given in Section 5.

2. FTS definitions and algorithms

2.1. FTS definitions

Definition 1. Let YjðtÞ 2 R; 1 6 t 6 N; 1 6 j 6 m (N is number of
data vectors and m is number of dependent and independent
variables together) be the universe of discourse of the jth variable
on which fuzzy sets Aj,i(t), 1 6 i 6 cj (cj is number of fuzzy sets of
the jth variable) are defined and F(t) be a collection of Aj,i(t)s, then
F(t) is defined as a Fuzzy Time Series on Yj(t)s. In general, F(t) is a
linguistic variable with linguistic values, Aj,i(t).

Definition 2. If F(t) is caused by F(t � 1), the Fuzzy Logical Rela-
tionship (FLR) between them is represented by F(t � 1) ? F(t)
which is a first order FLR. This relation can also be written as
F(t) = F(t � 1)�R(t � 1,t), where � is composition operator and
R(t � 1,t) is a fuzzy relationship. In this FLR, F(t � 1) and F(t) are
called current state and next state which are denoted by Aj;i1 and
Aj;i2 , respectively. Similarly, an n-order FLR, F(t � n),
F(t � n + 1), . . . ,F(t � 2),F(t � 1) ? F(t) is shown by

Aj;i1 ;Aj;i2 ; . . . ;Aj;in�1 ;Aj;in ! Aj;inþ1 ð1Þ

where,

Aj;i1 ¼ Fðt � nÞ;Aj;i2 ¼ Fðt � nþ 1Þ; . . . ;Aj;in�1 ¼ Fðt � 2Þ;
Aj;in ¼ Fðt � 1Þ)Aj;inþ1 ¼ FðtÞ ð2Þ

Usually, first and last FLRs of an FTS are defined as
U;Aj;i2 ; . . . ;Aj;in�1 ;Aj;in ! Aj;inþ1 and Aj;i1 ;Aj;i2 ; . . . ;Aj;in�1 ;Aj;in ! U,
where U is a null value.

Definition 3. FLRs with identical current states are grouped into a
Fuzzy Logical Relationship Group (FLRG). For instance:

Aj;i1 ;Aj;i2 ; . . . ;Aj;in�1 ;Aj;in !Aj;q1

Aj;i1 ;Aj;i2 ; . . . ;Aj;in�1 ;Aj;in !Aj;q2

..

.

Aj;i1 ;Aj;i2 ; . . . ;Aj;in�1 ;Aj;in !Aj;qr

8>>><
>>>:

)Aj;i1 ;Aj;i2 ; . . . ;Aj;in�1 ;Aj;in !Aj;q1
;Aj;q2

; . . . ;Aj;qr

ð3Þ

where, Aj;i1 ;Aj;i2 ; . . . ;Aj;in�1 ;Aj;in ! Aj;q1
;Aj;q2

; . . . ;Aj;qr
is a n-order

FLRG.

2.2. FTS basic algorithms

FTS algorithms are generally composed of the following steps
(Chen, 1996). Each variable is handled individually in both interval
and clustering based algorithms. The algorithm takes training data
set including input/output data as input and yields forecasted val-
ues of the dependent variable as output which is usually last row of
the data set.

I. Definition of the universe of discourse for jth variable,
Kj ¼ ½Lmin;j � L1;j; Lmax;j þ L2;j�, where Lmin,j and Lmax,j are mini-
mum and maximum of the jth variable and L1,j and L2,j are
the lowest positive values chosen such that Kj can be
divided into the number of desired intervals.

II. Partitioning Kj into cj intervals of equal lengths, kj,i, 1 6 i 6 cj,
such that [cj

i¼1kj;i ¼ Kj.
III. Definition of fuzzy sets Aj,i, 1 6 i 6 cj for the jth variable as in

Definition 1 based on the above intervals. Fuzzy sets are
defined as:

Aj;1 ¼
a11

kj;1
þ a12

kj;2
þ . . .þ

a1cj

kj;cj

Aj;2 ¼
a21

kj;1
þ a22

kj;2
þ . . .þ

a2cj

kj;cj

..

.

Aj;cj
¼

acj1

kj;1
þ

acj2

kj;2
þ . . .þ

acjcj

kj;cj

ð4Þ

cj is usually taken as 7. In the literature, these fuzzy sets are defined
as:

Aj;1¼
1

kj;1
þ0:5

kj;2
þ 0

kj;3
þ . . .þ 0

kj;cj

Aj;2¼
0:5
kj;1
þ 1

kj;2
þ0:5

kj;3
þ 0

kj;4
þ . . .þ 0

kj;cj

..

.

Aj;i ¼
0

kj;1
þ 0

kj;2
þ . . .þ 0

kj;i�2
þ 0:5

kj;i�1
þ 1

kj;i
þ 0:5

kj;iþ1
þ 0

kj;iþ2
þ . . .þ 0

kj;cj

..

.

Aj;cj
¼ 0

kj;1
þ 0

kj;2
þ . . .þ 0

kj;cj�2
þ 0:5

kj;cj�1
þ 1

kj;cj

ð5Þ

IV. Fuzzification of the data: If a given value in the jth row of the
data, Yj,t, belongs to the interval kj,i, Yj,t 2 kj,i, it is fuzzified to
the fuzzy set Aj,i.

V. Construction of the FLRs as described in Definition 2 and
FLRGs as in Definition 3.

VI. Finding current state of FLR of the forecast time,
Aj;i1 ;Aj;i2 ; . . . ;Aj;in�1 ;Aj;in .

VII. Finding fuzzy value(s) of the forecast: FLRG with current
state identical to that of forecast FLR (all with the same
Aj;i1 ;Aj;i2 ; . . . ;Aj;in�1 ;Aj;in of step VI) is found. Then, next
state of this FLRG, R ¼ fAj;q1

;Aj;q2
; . . . ;Aj;qr

g is considered
as the fuzzy value(s) of the forecast. Note that sometimes
R may be an empty set. Finding crisp value of forecast
with an empty R will be explained later in the FTS
algorithms.

VIII. Defuzzification of the fuzzy value(s) of the forecast: Fuzzy
value(s) of the forecast, R, are defuzzified into the crisp
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