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a b s t r a c t

Condition-based maintenance is an emerging paradigm of modern system health monitoring, where main-

tenance operations are based on diagnostics and prognostics. Condition-based maintenance strategies in the

industry benefit from accurate predictions of the remaining useful life (RUL) of an asset in order to optimise

maintenance scheduling, resources and supply chain management. Due to the substantial costs involved,

small improvements in efficiency, result in the significant cost reductions for overall maintenance services

as well as its impact on energy consumption and the environment. In this paper, we present a data-driven

methodology combining the hierarchical Bayesian data modelling techniques with an information-theoretic

direct density ratio based change point detection algorithm to address two very generic issues namely dealing

with irregular events and dealing with recoverable degradation, which are often encountered in the progno-

sis of complex systems such as the modern gas turbine engines. Its performance is compared with that of an

existing Bayesian Hierarchical Model technique and is found to be superior in typical (heterogeneous) and

non-typical scenarios. First, the technique is illustrated by an example on the simulation data and later on, it

is also validated on the real-world civil aerospace gas turbine fleet data.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction1

For many of the world’s largest manufacturers, aftermarket ser-2

vice and parts operations are essential to their business. For example,3

Rolls-Royce, one of the world’s largest jet engine and gas turbine mak-4

ers, has more than 14,000 aerospace engines in service, operated by5

more than 500 airlines and powering more than 5.5 million commer-6

cial flights per year (CDS, 2014). The company’s service and part busi-7

ness revenue is about 55% of the approximately US$11 billion total8

revenues (Rolls-Royce, 2014). This evidence emphasises the signifi-9

cant benefits of applying prognostics in civil aerospace gas turbine10

engines, which is one of the effective ways to reduce life cycle costs,11

improve engine reliability as well as availability (Li & Nilkitsaranont,12

2009; Marinai, Probert, & Singh, 2004).13

In gas turbine applications, the degradation pattern of a gas tur-14

bine engine health over time is unknown. It could be linear, non-15

linear or the combination of both (Li & Nilkitsaranont, 2009). The16

variation in degradation pattern occurs due to fault event or due to17
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the operating condition. Furthermore, the engine health may be re- 18

covered significantly after proper maintenance, which in-turn affects 19

the degradation pattern in the next cycle. In order to estimate ap- 20

propriate remaining useful life (RUL), it is important to accommodate 21

these events into a prognostic algorithm. In this paper, an integrated 22

prognostic algorithm is proposed to estimate RUL of civil aerospace 23

gas turbine engines. 24

This paper is organised as following: Section 2 provides the 25

background information about the gas turbine engine degradation 26

phenomenon its challenges. Section 3 describes the generic method- 27

ology and the practical implementation of integrated prognostic ap- 28

proach. Sections 3.1 and 3.2 discuss briefly the details of the main 29

algorithms namely Bayesian Hierarchical Models and Direct density 30

based change point algorithm respectively . In the Section 4 capabili- 31

ties of the proposed algorithm are demonstrated on the two different 32

synthetic data sets produced under two different operational scenar- 33

ios. Results are stated in the Section 5. Conclusions are discussed in 34

the Section 6. 35

2. Background 36

2.1. Gas turbine engine degradation 37

Turbine Gas Temperature (TGT) margin is conventionally used to 38

monitor the gas path degradation of the engine to detect the changes 39
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Fig. 1. Example of normalised TGT margin data. The maintenance effect can be seen

around flight cycle at 40 where the TGT margin degradation has recovered.

in performance for each engine and to indicate the need for inspec-40

tion/maintenance. In this paper, TGT margin is used to be forecast for41

RUL estimation of the engines (Malinge & Courtenay, 2007; Marinai,42

Singh, Curnock, & Probert, 2003; Müller, Staudacher, Friedl, Köhler, &43

Weißschuh, 2010). Fig. 1 shows an example of normalised TGT margin44

degradation data. The TGT margin data is normalised to have maxi-45

mum points of 1 (i.e. the healthiest TGT margin is equal to 1) and46

flight cycle is the number of flight experience by an aircraft.147

An aircraft engine can be considered as a complex system com-48

prising multiple interacting subsystems (Jamshidi, 2010). This sys-49

tem comprises hundreds or thousands of components. Intermediate50

groupings, or various levels of subsystems, are necessary to describe51

or depict these systems correctly. Degradation health index measure-52

ment, normally takes place at the system level (e.g. TGT margin), may53

also be influenced by the changes occurring in sub-system level or54

even component level. In Fig. 2, an aircraft engine is presented as an55

example of a complex system, which comprises of subsystems (e.g.56

Lower Pressure Compressor (LPC), High Pressure Turbine (HPT)). Fur-57

ther down the hierarchy, the subsystems are composed of compo-58

nents (e.g. HPT blades, etc.).59

A model-based prognostic approach for this type of system is60

complex to be constructed. However, modern gas turbine engines al-61

ready have been fitted by numerous sensors for control and monitor-62

ing purposes (Waters, 2009). This motivates the direct use of in-flight63

data to achieve the prognostic goal. Therefore, data-driven approach64

is promising to estimate RUL of civil aerospace gas turbine engine65

degradation.66

As shown in Fig. 1, there is a large uncertainty associated with67

TGT margin data as it gets corrupted with noise owing to gas68

turbine design, manufacturing, ambient and environmental condi-69

tion, operating condition, mission, maintenance action, etc. (Li &70

Nilkitsaranont, 2009). Large uncertainty in the data may cause in-71

consistency in prognostic prediction, especially when there is less72

data available. In other words, an irrational prediction may arise,73

e.g. the prediction may show improving health. To overcome this74

issue, some researchs have been focused on Bayesian approaches,75

such as (Gebraeel, 2006; Gebraeel, Lawley, Li, & Ryan, 2005; Guo,76

Li, & Pecht, 2015; He, Williard, Osterman, & Pecht, 2011). In gas tur-77

bine engine prognostics, Bayesian approaches have been adopted in78

1 This was normalised to maximum of 100, for protecting airline company’s sensitive

information.

Lipowsky, Staudacher, Bauer, and Schmidt (2010) Zaidan, Mills, and 79

Harrison (2013). Bayesian approaches are promising method to deal 80

with large uncertainty in degradation data. This method enables vari- 81

ation and uncertainty to be quantified, mainly by using distributions 82

instead of fixed values in risk assessment. 83

However, most developed prognostic Bayesian approaches are 84

based on single-level Bayesian non-Hierarchical Models (BnHMs). In 85

gas turbine engine cases, the fleet of engines, shown in Fig. 3, is capa- 86

ble of generating a considerable volume of health signal data. There- 87

fore, a prognostic algorithm should utilise, optimally, data available 88

from multiple fleets of engines (Fig. 3) for estimating the RUL of a 89

specific engine. The solution is to use Bayesian Hierarchical Models 90

(BHMs) which was recently developed by (Zaidan, Harrison, Mills, & 91

Fleming, 2015). In this paper, a Bayesian Hierarchical Model will be 92

used as a main prognostic algorithm. The brief concept of BHM for 93

prognostics will be discussed briefly in Section 3.1, whereas the de- 94

tails of this algorithm can be found in Zaidan et al. (2015). 95

2.2. Some challenges in Gas turbine engine prognostics 96

Zaidan et al. (2015) described the use of BHM to deal with prog- 97

nostics of gas turbine engine degradation. The results revealed that 98

this method is a promising concept in dealing with high uncertainty, 99

but linear degradation data. However, there are some issues in gas 100

turbine engine degradation that need to be considered further. This 101

paper is a continuation of our previous paper (Zaidan et al., 2015) 102

that aims to address some unsolved problems in gas turbine engine 103

prognostics. Several events may affect health index and the degrada- 104

tion pattern of a complex system such as a gas turbine engine. Two 105

main situations which can be considered important in context with 106

a gas turbine engine are: 1. Another situation occurs when the slope 107

in health index changes2 which may take place owing to a fault or 108

a step change in covariates. 2. First situation is when health index 109

recovers due to maintenance action. For example, if a fault3 has oc- 110

curred in an engine, the engine performance may deteriorate faster 111

than non-faulty engine. These issues are described in bit more detail 112

in the following subsections. 113

2.2.1. Handling multiple degradation patterns 114

In practice, research reveals that there are many patterns of fail- 115

ure which actually occur in engineering assets (Moubray, 1997). In 116

gas turbine engine degradation, most of the observed patterns of 117

degradation are nearly linear (Puggina & Venturini, 2012), however 118

there are cases where the rates of degradation may be non-linear 119

(Saravanamuttoo, Rogers, Cohen, & Straznicky, 2009). The latter is 120

caused by various factors, including a step change in covariates4 and 121

fault modes.5 122

To capture non-linear degradation behaviour, several researchers 123

have used dynamic models, such as autoregressive-integrated- 124

moving-average (ARIMA) (Marinai et al., 2003) and DLMs (Lipowsky 125

et al., 2010). However, these models are only effective for short-term 126

predictions, but less reliable when it is used for long-term predictions 127

due to dynamic noise, their sensitivity to initial system conditions 128

and an accumulation of systematic errors in the predictor (Sikorska, 129

Hodkiewicz, & Ma, 2011). Alternatively, detecting the sources of rapid 130

change would support a prognostic algorithm in capturing degrada- 131

tion’s non-linearity. For examples, Li and Nilkitsaranont (2009) dealt 132

with two patterns in gas turbine engine’s degradation by transit- 133

ing between linear and quadratic regression models. However, this 134

2 It may deteriorate faster or slower.
3 Here, this fault does not mean a catastrophic failure where there is a sudden and

total failure in the system from which recovery is impossible.
4 Covariates are any factors which affect degradation, such as operating conditions

and environmental effects.
5 Fault modes are specific types of fault. Creep, fatigue, corrosion, and wear are ex-

amples of mechanical fault modes.
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