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a b s t r a c t

Feature selection is used in many application areas relevant to expert and intelligent systems, such as data

mining and machine learning, image processing, anomaly detection, bioinformatics and natural language

processing. Feature selection based on information theory is a popular approach due its computational ef-

ficiency, scalability in terms of the dataset dimensionality, and independence from the classifier. Common

drawbacks of this approach are the lack of information about the interaction between the features and the

classifier, and the selection of redundant and irrelevant features. The latter is due to the limitations of the

employed goal functions leading to overestimation of the feature significance.

To address this problem, this article introduces two new nonlinear feature selection methods, namely

Joint Mutual Information Maximisation (JMIM) and Normalised Joint Mutual Information Maximisation

(NJMIM); both these methods use mutual information and the ‘maximum of the minimum’ criterion, which

alleviates the problem of overestimation of the feature significance as demonstrated both theoretically and

experimentally. The proposed methods are compared using eleven publically available datasets with five

competing methods. The results demonstrate that the JMIM method outperforms the other methods on most

tested public datasets, reducing the relative average classification error by almost 6% in comparison to the

next best performing method. The statistical significance of the results is confirmed by the ANOVA test. More-

over, this method produces the best trade-off between accuracy and stability.

© 2015 Published by Elsevier Ltd.

1. Introduction1

High dimensional data is a significant problem in both super-2

vised and unsupervised learning (Janecek, Gansterer, Demel, & Ecker,3

2008), which is becoming even more prominent with the recent ex-4

plosion of the size of the available datasets both in terms of the num-5

ber of data samples and the number of features in each sample (Zhang6

et al., 2015). The main motivation for reducing the dimensionality of7

the data and keeping the number of features as low as possible is to8

decrease the training time and enhance the classification accuracy of9

the algorithms (Guyon & Elisseeff, 2003; Jain, Duin, & Mao, 2000; Liu10

& Yu, 2005).11

Dimensionality reduction methods can be divided into two main12

groups: those based on feature extraction and those based on feature13

selection. Feature extraction methods transform existing features14

into a new feature space of lower dimensionality. During this process,15

new features are created based on linear or nonlinear combinations16

of features from the original set. Principal Component Analysis (PCA)17

(Bajwa, Naweed, Asif, & Hyder, 2009; Turk & Pentland, 1991) and18
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Linear Discriminant Analysis (LDA) (Tang, Suganthana, Yao, & Qina, 19

2005; Yu & Yang, 2001) are two examples of such algorithms. Feature 20

selection methods reduce the dimensionality by selecting a subset 21

of features which minimises a certain cost function (Guyon, Gunn, 22

Nikravesh, & Zadeh, 2006; Jain et al., 2000). Unlike feature extraction, 23

feature selection does not alter the data and, as a result, it is the 24

preferred choice when an understanding of the underlying physical 25

process is required. Feature extraction may be preferred when only 26

discrimination is needed (Jain et al., 2000). 27

Feature selection is used in many application areas relevant to ex- 28

pert and intelligent systems, such as data mining and machine learn- 29

ing, image processing, anomaly detection, bioinformatics and natural 30

language processing (Hoque, Bhattacharyya, & Kalita, 2014). Feature 31

selection is normally used at the data pre-processing stage before 32

training a classifier. This process is also known as variable selection, 33

feature reduction or variable subset selection. 34

The topic of feature selection has been reviewed in detail in a 35

number of recent review articles (Bolón-Canedo, Sánchez-Maroño, 36

& Alonso-Betanzos, 2013; Brown, Pocock, Zhao, & Lujan, 2012; 37

Chandrashekar & Sahin, 2014; Vergara & Estévez, 2014). Usually, 38

feature selection methods are divided into two categories in terms of 39

evaluation strategy, in particular, classifier dependent (‘wrapper’ and 40

‘embedded’ methods) or classifier independent (‘filter’ methods). 41

Wrapper methods search the feature space, and test all possible 42
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subsets of feature combinations by using the prediction accuracy43

of a classifier as a measure of the selected subset’s quality, with-44

out modifying the learning function. Therefore, wrapper methods45

can be combined with any learning machine (Guyon et al., 2006).46

They perform well because the selected subset is optimised for the47

classification algorithm. On the other hand, wrapper methods may48

suffer from over-fitting to the learning algorithm. This means that49

any changes in the learning model may reduce the usefulness of50

the subset. In addition, these methods are very expensive in terms51

of computational complexity, especially when handling extremely52

high-dimensional data (Brown et al., 2012; Cheng et al., 2011; Ding &53

Peng, 2003; Karegowda, Jayaram, & Manjunath, 2010).54

The feature selection stage in the embedded methods is combined
Q2

55

with the learning stage. These methods are less expensive in terms56

of computational complexity and less prone to over-fitting; however,57

they are limited in terms of generalisation, because they are very spe-58

cific to the used learning algorithm (Guyon et al., 2006).59

Classifier-independent methods rank features according to their60

relevance to the class label in the supervised learning. The relevance61

score is calculated using distance, information, correlation and62

consistency measures. Many techniques have been proposed to63

compute the relevance score, including Pearson correlation coef-64

ficients (Rodgers & Nicewander, 1988), Fisher’s discriminate ratio65

“F score” (Lin, Li, & Tsai, 2004), the Scatter criterion (Duda, Hart, &66

Stork, 2001), Single Variable Classifier SVC (Guyon & Elisseeff, 2003),67

Mutual Information (Battiti, 1994), the Relief Algorithm (Kira &68

Rendell, 1992; Liu & Motoda, 2008), Rough Set Theory (Liang, Wang,69

Dang, & Qian, 2014) and Data Envelopment Analysis (Zhang, Yang,70

Xiong, Wang, & Zhang, 2014).71

The main advantages of the filter methods are their computa-72

tional efficiency, scalability in terms of the dataset dimensionality,73

and independence from the classifier (Saeys, Inza, & Larranaga, 2007).74

A common drawback of these methods is the lack of information75

about the interaction between the features and the classifier and76

selection of redundant and irrelevant features due to the limitations77

of the employed goal functions leading to overestimation of the78

feature significance.79

Information theory (Cover & Thomas, 2006) has been widely80

applied in filter methods, where information measures such as81

mutual information (MI) are used as a measure of the features’82

relevance and redundancy (Battiti, 1994). MI does not make an83

assumption of linearity between the variables, and can deal with84

categorical and numerical data with two or more class values (Meyer,85

Schretter, & Bontempi, 2008). There are several alternative measures86

in information theory that can be used to compute the relevance87

of features, namely mutual information, interaction information,88

conditional mutual information, and joint mutual information.89

This paper contributes to the knowledge in the area of feature90

selection by proposing two new nonlinear feature selection meth-91

ods based on information theory. The proposed methods aim to92

overcome the limitations of the current state of the art filter feature93

selection methods such as overestimation of the feature significance,94

which causes selection of redundant and irrelevant features. This95

is achieved through the introduction of a new goal function based96

on joint mutual information and the ‘maximum of the minimum’97

nonlinear approach. As shown in the evaluation section, one of the98

proposed methods outperforms the competing feature selection99

methods in terms of classification accuracy, decreasing the average100

classification error by 0.88% in absolute terms and almost by 6% in101

relative terms in comparison to the next best performing method.102

In addition, it produces the best trade-off between accuracy and103

stability. The statistical significance of the reported results is further104

confirmed by ANOVA test.105

This paper also reviews existing feature selection methods high-106

lighting their common limitations and compares the performance of107

the proposed and existing methods on the basis of several criteria. For108

example, a nonlinear approach, which employs the ‘maximum of the 109

minimum’ criterion, is compared to a linear approach, which employs 110

cumulative summation approximation. To optimise the nonlinear ap- 111

proach, a goal function based on joint mutual information is com- 112

pared to the goal function based on conditional mutual information. 113

Finally, the effect of using normalised mutual information instead of 114

mutual information is tested. 115

The rest of the paper is organised as follows. Section 2 presents the 116

principles of the information theory, Section 3 reviews related work, 117

Section 4 discusses the limitations of current feature selection crite- 118

ria, Section 5 introduces the proposed methods. Section 6 describes 119

the conducted experiments and discusses the results. Section 7 con- 120

cludes the paper. 121

2. Information theory 122

This section introduces the principles of information theory by fo- 123

cusing on entropy and mutual information and explains the reasons 124

for employing them in feature selection. 125

The entropy of a random variable is a measure of its uncertainty 126

and a measure of the average amount of information required to de- 127

scribe the random variable (Cover & Thomas, 2006). The entropy of a 128

discrete random variable X = (x1, x2, . . . . . . , xN) is denoted by H(X), 129

where xi refers to the possible values that X can take. H(X) is defined 130

as: 131

H(X) = −
N∑

i=1

p(xi)log(p(xi)), (1)

where p(xi) is the probability mass function. The value of p(xi), when 132

X is discrete, is: 133

p(xi) = number of instants with value xi

total number of instants (N)
. (2)

The base of the logarithm, log, is 2, so 0 ≤ H(X) ≤ 1. For any two dis- 134

crete random variables X and C = (c1, c2, . . . . . . , cM), the joint entropy 135

is defined as: 136

H(X,C) = −
M∑

j=1

N∑
i=1

p
(
xi, c j

)
log

(
p
(
xi, c j

))
(3)

where p(xi, c j) is the joint probability mass function of the variables 137

X and C. The conditional entropy of the variable X given C is defined 138

as: 139

H(C|X) = −
M∑

j=1

N∑
i=1

p
(
xi, c j

)
log

(
p
(
c j|xi

))
(4)

The conditional entropy is the amount of uncertainty left in C when 140

a variable X is introduced, so it is less than or equal to the entropy of 141

both variables. The conditional entropy is equal to the entropy if, and 142

only if, the two variables are independent. The relation between joint 143

entropy and conditional entropy is: 144

H(X,C) = H(X) + H(C|X) (5)

145
H(X,C) = H(C) + H(X|C) (6)

Mutual Information (MI) is the amount of information that both vari- 146

ables share, and is defined as: 147

I(X;C) = H(C) − H(C|X) (7)

MI can be expressed as the amount of information provided by vari- 148

able X , which reduces the uncertainty of variable C. MI is zero if the 149

random variables are statistically independent. MI is symmetric, so: 150

I(X;C) = I(C; X) (8)

151
I(X;C) = H(X) − H(X|C) (9)

Please cite this article as: M. Bennasar et al., Feature selection using Joint Mutual Information Maximisation, Expert Systems With Applications

(2015), http://dx.doi.org/10.1016/j.eswa.2015.07.007

http://dx.doi.org/10.1016/j.eswa.2015.07.007


Download English Version:

https://daneshyari.com/en/article/10321769

Download Persian Version:

https://daneshyari.com/article/10321769

Daneshyari.com

https://daneshyari.com/en/article/10321769
https://daneshyari.com/article/10321769
https://daneshyari.com

