
ARTICLE IN PRESS
JID: ESWA [m5G;July 30, 2015;14:21]

Expert Systems With Applications xxx (2015) xxx–xxx

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

An efficient strategy for covering array construction with fuzzy

logic-based adaptive swarm optimization for software testing use

Thair Mahmoud a, Bestoun S. Ahmed b,*Q1

a School of Engineering, Edith Cowan University, 270 Joondalup Drive, Joondalup, WA 6027, Australia
b Software Engineering Department, Engineering College, Salahaddin University-Hawler (SUH), 44002 Erbil, Kurdistan

a r t i c l e i n f o

Keywords:

Covering array

Fuzzy logic

Combinatorial design

Particle swarm optimization

Software testing

Test generation tools

Search-based software engineering

a b s t r a c t

Recent research activities have demonstrated the effective application of combinatorial optimization in dif-

ferent areas, especially in software testing. Covering array (CA) has been introduced as a representation of

the combinations in one complete set. CAλ(N; t, k, v) is an N × k array in which each t-tuple for an N × t

sub array occurs at least λ times, where t is the combination strength, k is the number of components (fac-

tors), and v is the number of symbols for each component (levels). Generating an optimized covering array

for a specific number of k and v is difficult because the problem is a non-deterministic polynomial-time hard

computational one. To address this issue, many relevant strategies have been developed, including stochas-

tic population-based algorithms. This paper presents a new and effective approach for constructing efficient

covering arrays through fuzzy-based, adaptive particle swarm optimization (PSO). With this approach, effi-

cient covering arrays have been constructed and the performance of PSO has been improved for this type

of application. To measure the effectiveness of the technique, an empirical study is conducted on a software

system. The technique proves its effectiveness through the conducted case study.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction1

Combinatorial testing (CT) based on combinatorial design has2

been researched extensively in the software field over the past3

decade, and studies focus on identifying the applications of this4

method. Moreover, combinatorial design and optimization have been5

applied as a sampling technique (e.g., Sahib, Ahmed, & Potrus, 2014;6

Sulaiman & Ahmed, 2013; Yilmaz et al., 2014) given its effectiveness7

and usefulness in the software testing field (e.g., Ahmed, Zamli, & Lim,8

2012a; Barrett & Dvorak, 2009; Qu, Cohen, & Woolf, 2007). A cover-9

ing array (CA) is a mathematical representation of the combinations10

in one complete set. In this set, every t-combination of the input must11

be covered at least once by the CA (Zhanga, Yan, Zhao, & Zhang, 2014).12

Hence, the finite set of elements is arranged into patterns (subsets,13

words, and arrays) according to specific rules (Ahmed, Abdulsamad,14

& Potrus, 2015; Yilmaz et al., 2014).15

A CA is difficult to generate because this issue is a non-16

deterministic polynomial-time (NP)-hard computational problem.17

Computation time and problem complexity increase exponen-18

tially with an increase in the number of input parameters19

* Corresponding author. Tel.: +964 750 1725998.

E-mail addresses: t.mahmoud@ecu.edu.au (T. Mahmoud), bestoon82@gmail.com,

bestoon82@yahoo.com (B.S. Ahmed).

(Nie & Leung, 2011). In addition, no unique arrangement and size is 20

set for the array. To solve this problem, researchers have adopted ar- 21

tificial intelligent optimization theories. 22

Strategies based on simulated annealing (SA) (Cohen, 2004), ant 23

colony algorithm (ACA) (Chen, Gu, Li, & Chen, 2009), tabu search 24

(TS) (Nurmela, 2004), genetic algorithm (GA) (Shiba, Tsuchiya, & 25

Kikuno, 2004), and particle swarm optimization (PSO) (Ahmed & 26

Zamli, 2011b; Ahmed et al., 2012a; Chen, Gu, Qi, & Chen, 2010) can 27

effectively generate CAs in optimized sizes. Due to its robustness and 28

simplicity, PSO efficiently produces CAs for different experimental 29

sets; however, our experience and that of other researchers is that 30

PSO is prone to parameter tuning problems (Ahmed et al., 2012a; 31

Lessmann, Caserta, & Arango, 2011). As per an analysis of PSO search 32

performance in optimising the structures for CAs, the stochastic ap- 33

proach in PSO can be enforced further with knowledge-based rules 34

to automatically shift the path of this approach to the correct di- 35

rection. This hypothesis is developed based on the literature postu- 36

lating that PSO performance is mainly dependent on the values of 37

search adaptation parameters. In other words, PSO combines the two 38

roles of searching mechanisms, namely, exploration and exploitation. 39

In the former, PSO performs global optimum solution searching; in 40

the latter, PSO seeks accurate optimum solutions by converging the 41

search around a promising candidate. For instance, the determina- 42

tion of appropriate values for these parameters should be based on a 43

compromise between the local and global explorations that facilitate 44

http://dx.doi.org/10.1016/j.eswa.2015.07.029

0957-4174/© 2015 Elsevier Ltd. All rights reserved.

Please cite this article as: T. Mahmoud, B.S. Ahmed, An efficient strategy for covering array construction with fuzzy logic-based adaptive

swarm optimization for software testing use, Expert Systems With Applications (2015), http://dx.doi.org/10.1016/j.eswa.2015.07.029

http://dx.doi.org/10.1016/j.eswa.2015.07.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/eswa
mailto:t.mahmoud@ecu.edu.au
mailto:bestoon82@gmail.com
mailto:bestoon82@yahoo.com
http://dx.doi.org/10.1016/j.eswa.2015.07.029
http://dx.doi.org/10.1016/j.eswa.2015.07.029


2 T. Mahmoud, B.S. Ahmed / Expert Systems With Applications xxx (2015) xxx–xxx

ARTICLE IN PRESS
JID: ESWA [m5G;July 30, 2015;14:21]

accelerated convergence. Evidence shows that depending on problem45

complexity, different parameter values are required to obtain the op-46

timum solution (Huimin, Qiang, & Zhaowei, 2014; Xu, 2013). This is-47

sue can be solved by supporting the PSO algorithm with a mechanism48

that adapts the parameters to process scenarios and thus controls op-49

timization performance. This strategy utilizes a Mamdani-type fuzzy50

inference system (FIS), and the FIS parameters can be designed to suit51

the optimization problem to be solved. In the current work, three52

FIS designs are proposed to tune the three main PSO parameters.53

The proposed FISs are built to monitor PSO performance and adjust54

the parameters to overcome optimization process problems, thus im-55

proving efficiency. This approach is applied to CA generation.56

Thus, the contributions of this research are threefold. First, the57

proposed methodology is intended to overcome the drawback of pa-58

rameter tuning in the conventional PSO algorithm when generating59

CA structures by employing a set of rules to monitor PSO perfor-60

mance. As a result, CAs with improved size can be generated. Sec-61

ond, the monitoring mechanism proposed in this work is applied via62

fuzzy logic. A specific rule-based system is established and a mem-63

bership function design is customized to improve CA generation ef-64

ficiency. This mechanism can be applied to detect faults within an65

artifact effectively for software mutation testing. Third, the imple-66

mentation of this methodology establishes a unified strategy for CA67

generation. This methodology includes adding the fuzzy logic-based68

adaptive PSO to a set of other algorithms that can automatically69

generate arrays and configure the relevant PSO covering structure70

accordingly.71

On this basis, the paper is organized as follows: Section 2 presents72

the theoretical backgrounds, mathematical notations, and defini-73

tions of the CA. Section 3 reviews relevant literature and highlights74

the most important findings. Section 4 introduces and provides an75

overview of PSO. Section 5 introduces in detail and justifies the pro-76

posed strategy with the design and implementation, including the77

appropriate algorithms. Section 6 presents the evaluation results.78

Section 7 lists the threats to the validity of the conducted experi-79

ments. Finally, Section 8 provides the concluding remarks.80

2. CA mathematical preliminaries and notations81

CAs first appeared as a generalization of orthogonal arrays. An or-82

thogonal array OAλ (t, k, g) is an array with index λ that has strength83

t, k factors, and g levels. For a set of columns B = {b0, … , b t−1} ⊆84

{0, … , k − 1}, we say that B is λ-covered if the N × s sub array over85

the columns of B has each t-tuple over v as a row at least λ times. The86

λ parameter is often omitted when λ = 1 (Cheng, 1980). Orthogonal87

Arrays have been used in the literature in the design of experiments88

by taking each row in the array as a test case. The main drawback of89

the OA is its limited usefulness in this application since it requires the90

factors and levels to be uniform (Beizer, 1990; Ronneseth & Colbourn,91

2009). To address this limitation, the Covering Array (CA) has been92

introduced to complement OA.93

A Covering Array CAλ(N; t, k, v) is an N × k array over {0, … , v − 1}94

such that every B ∈
({0, ... , k−1}

t

)
is λ-covered such that every N × t95

sub-array contains all ordered subsets from v values of size t at least96

λ times (Nie et al., 2015; Yilmaz et al., 2014). For optimality, we nor-97

mally want t-tuples to occur at least once. As such, we consider the98

value of λ = 1, which is often omitted. Hence the notation becomes99

CA(N;t,k,v) (Hartman & Raskin, 2004). We say that the array has size100

N, strength t, k factors, v levels, and index λ. Given t, k, v, and λ, the101

smallest N for which a CAλ(N; t, k, v) exists is denoted CANλ(t, k, g). A102

CAλ(N; t, k, v) with N = CANλ(t, k, v) is said to be optimal.103

One serious problem in CA is that the levels for each input factor104

are considered to be uniform. In other words, each input factor must105

have equal numbers of levels. However, most of the time, the input-106

factors have different levels in practice. For this case, mixed level cov-107

ering array (MCA) is notated. A mixed level covering array, MCA (N; d, 108

k, (v1, v2, … vk)), is an N × k array on v levels, where the rows of each 109

N × d sub-array cover and all d-tuples of values from the d columns 110

occur at least once (Xiao, Cohen, & Woolf, 2007). For more flexibility 111

in the notation, the array can be presented by MCA (N; d, vk)) and can 112

be used for a fixed-level CA, such as CA (N ;d, vk) (Lei et al., 2008). 113

3. Review of literature and related work 114

CA generation is an NP-hard problem; hence, methods for ad- 115

dressing this issue effectively have been sought. Two main methods 116

are employed to generate CAs, namely, horizontal and vertical gener- 117

ation methods (Nie & Leung, 2011). In the vertical method, an input 118

factor is generated each time, that is, one-factor-one-time (OFOT). 119

This approach is sometimes called one-parameter-at-a-time. At the 120

end of the generation process, whole rows form the final CA. By con- 121

trast, the horizontal method is known as one-test-at-a-time (OTAT) 122

(Bryce, Colbourn, & Cohen, 2005; Nie & Leung, 2011). 123

The OFAT method begins with an initial array that consists of sev- 124

eral selected factors (Othman, Zamli, & Mohamad, 2013). To certify 125

combination coverage, the array is extended horizontally by adding 126

one factor at a time. The CA is extended vertically with the intro- 127

duction of new test cases. This method was first implemented in the 128

in-parameter-order (IPO) algorithm (Yu & Tai, 1998), and this strat- 129

egy was further developed to generate variations of the IPO algo- 130

rithm, such as IPOG (Lei, Kacker, Kuhn, Okun, & Lawrence, 2007), 131

IPOG-D (Lei, Kacker, Kuhn, Okun, & Lawrence, 2008), IPOG-F (Forbes, 132

Lawrence, Lei, Kacker, & Kuhn, 2008), and IPO-s (Calvagna & Gargan- 133

tini, 2009). 134

The OTAT method normally iterates through all elements of the 135

combinations, and an entire test case is generated per iteration. Most 136

methods begin by generating numerous solutions and then select- 137

ing the best solution that covers the majority of the t-tuples; this 138

process requires an optimization mechanism. According to Nie and 139

Leung (2011), these techniques can be classified into four main groups 140

of algorithms: random, greedy, heuristic search, and metaheuristic al- 141

gorithms. In random optimization algorithms, test cases are selected 142

at random from a complete set of such cases based on input distri- 143

butions (Nie & Leung, 2011). The selection process is based on the 144

coverage of the t-tuples and simply works by approaching favorable 145

positions in the search space iteratively. These positions are sampled 146

around the current position. Greedy algorithms generally construct 147

a set of objects from the smallest possible elements recursively. Prob- 148

lems are solved through recursion, in which the solution to a partic- 149

ular problem depends on solutions to smaller instances of the same 150

problem. Greedy algorithms are used with the OTAT method to cover 151

many uncovered combinations in each row of the final combinato- 152

rial test suite (Wang, Xu, & Nie, 2008). A considerable amount of re- 153

search has been conducted to develop different algorithms and tools, 154

such as the algorithm applied to pair-wise generation in the CATS 155

tool (Sherwood, 1994), the greedy algorithms used in the PICT tool 156

(Czerwonka, 2006), and the density-based greedy algorithm (Bryce & 157

Colbourn, 2007). 158

Heuristic search- and artificial intelligence (AI)-based techniques 159

have been employed effectively in CA construction. These techniques 160

generally start with a random set of solutions. Then, a transforma- 161

tion mechanism is applied to this set to transfer it to a new set in 162

which the solutions are particularly efficient for t-tuple coverage. The 163

transformation equations must generate a more efficient set for each 164

iteration. Despite the detailed variations in heuristic search tech- 165

niques, the essential difference lies in the transformation functions 166

and mechanisms. In the current study, techniques such as SA (Cohen, 167

Dwyer, & Shi, 2007), TS (Nurmela, 2004), GA (Shiba, et al., 2004), 168

ACA (Chen et al., 2009; Shiba et al., 2004), and PSO (Ahmed, Sahib, 169

& Potrus, 2014; Ahmed, Zamli, & Lim, 2012b) are effectively used for 170

CA construction. 171

Please cite this article as: T. Mahmoud, B.S. Ahmed, An efficient strategy for covering array construction with fuzzy logic-based adaptive

swarm optimization for software testing use, Expert Systems With Applications (2015), http://dx.doi.org/10.1016/j.eswa.2015.07.029

http://dx.doi.org/10.1016/j.eswa.2015.07.029


Download English Version:

https://daneshyari.com/en/article/10321787

Download Persian Version:

https://daneshyari.com/article/10321787

Daneshyari.com

https://daneshyari.com/en/article/10321787
https://daneshyari.com/article/10321787
https://daneshyari.com

