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a b s t r a c t

Low-rank representation (LRR) and its extensions have proven to be effective methods to handle different
kinds of subspace segmentation applications. In this paper, we propose a new subspace segmentation
algorithm, termed latent space robust subspace segmentation based on low-rank and locality constraints
(LSRS2). Different from LRR, LSRS2 learns a low-dimensional space and a coefficient matrix for a data set
simultaneously. In the obtained latent space, the coefficient matrix can faithfully reveal both the global
and local structures for the data set. Furthermore, we build the connections between LSRS2 and robust
coding methods, and show LSRS2 can be regarded as a kind of robust LRR method. Therefore, it can be
guaranteed in theory that LSRS2 shows good performance. In addition, an efficient optimization method
for solving LSRS2 is presented and its convergence is also proven. Extensive experiments show that the
proposed algorithm outperforms the related subspace segmentation methods.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In computer vision and patter recognition fields, it is one of the
most challenging problems to recover inherent structures for high
dimensional data. In most cases, high dimensional data from differ-
ent classes can be viewed as samples generated from a union of lin-
ear subspaces (Liu et al., 2013; Rao, Tron, Vidal, & Ma, 2010).
Hence, many kinds of machine learning algorithms such as
Gaussian mixture model (Bishop, 2007; He, Cai, Shao, Bao, & Han,
2011; Ma, Yang, Derksen, & Fossum, 2008), matrix factorization
(Costeira & Kanade, 1998; Lee & Seung, 1999), similarity-based
methods (Duda, Hart, & Stork, 2000; Ng, Jordan, & Weiss, 2001;
Shi & Malik, 2000) and representation coefficient based methods
(Elhamifar & Vidal, 2009; Hu, Lin, Feng, & Zhou, 2014; Liu et al.,
2013) have been proposed to tackle the subspace segmentation
problems.

Gaussian mixture model assumes that mixed data is drawn
from a mixture of Gaussian distributions. By using the expectation
maximization (EM) algorithm (Dempster, Laird, & Rubin, 1977) to
solve a model estimation problem, the obtained conditional prob-
abilities of data points can be used to segment the data. The main
drawback of Gaussian mixture model based approaches is that
they are sensitive to the noise and outliers (Liu, Lin, & Yu, 2010).

Factorization-based methods (Costeira & Kanade, 1998; Lee &
Seung, 1999) seek two matrices (factors) whose product provides
a good approximation to the original data matrix. Then one of
the two matrices actually discovers the segmentation of data sam-
ples. When the data is grossly corrupted, it can be found that algo-
rithms used to solve factorization-based models will be usually
trapped at local minima. K-means (Ding & He, 2004; Duda et al.,
2000) and spectral clustering (Ng et al., 2001; Shi & Malik, 2000)
are two kinds of representative algorithms of similarity-based
methods. Because of the great successes achieved in image seg-
mentation (Shi & Malik, 2000) and many other real world applica-
tions (Cai, He, Ma, Wen, & Zhang, 2004; Higham, Kalna, & Kibble,
2007), spectral clustering algorithms attract lots of researchers’
interests. However, the performance of spectral clustering largely
depends on whether or not the constructed affinity graphs can
reveal the structures of data sets. Traditional spectral clustering
algorithms usually use K-nearest-neighbor (KNN) (Duda et al.,
2000) method to construct affinity graphs. But KNN may not be
capable of discovering the intrinsic structures for different kinds
of complex data sets.

Representation coefficient based methods could be regarded as
the extensions of spectral clustering. For a group of data samples,
they use the data set itself to represent each data point. Then the
obtained representation coefficient vectors are concentrated to
form an affinity graph. Finally, a spectral clustering algorithm such
as Normalized Cut (N-cut) (Shi & Malik, 2000) is used to obtained
the segmentation solution. The most well-known representation
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coefficient based subspace segmentation methods are sparse
subspace clustering (SSC) (Elhamifar & Vidal, 2009) and low-rank
representation (LRR) (Liu et al., 2010, 2013). Elhamifar and Vidal
proposed SSC based on sparse representation (SR) (Wright, Yang,
Ganesh, Sastry, & Ma, 2009) method. Liu et al. argued that SR com-
putes the sparse representation of each data individually, so the
l1-norm graphs used in SSC may not be able to discover the data’s
global structures and the performance of SSC will be reduced when
data is grossly corrupted (Liu et al., 2010; Liu et al., 2013).
Consequently, they devised a low-rank representation (LRR) algo-
rithm which finds the lowest-rank representations of all data
jointly. Compared with SSC, LRR achieved much better subspace
segmentation results on different kinds of data sets. Inspired by
LRR, Zhuang et al. added sparse and non-negative constraints on
the coefficient matrix and presented a nonnegative lowest-rank
and sparsest representation method (NNLRSR) (Zhuang et al.,
2012). Tang et al. performed a deeper analysis on NNLRSR and pro-
posed the structure-constrained low-rank representation (SCLRR)
(Tang, Liu, & Zhang, 2014). They claimed that NNLRSR was actually
a special case of SCLRR. Li et al. added a b-match constraint into
LRR to construct balance affinity graphs for semi-supervised learn-
ing (Li & Fu, 2013). By incorporating the label information of data
sets, Zhang et al. devised a structured low-rank representation
(SLRR) method and a supervised learning method to construct a
discriminative dictionary based on SLRR (Zhang, Jiang, & Davis,
2013). Chen et al. proposed a discriminative low-rank representa-
tion (DLRR) (Chen & Zhang, 2014) which compelled the distances
between the low-rank representations of data samples in different
classes to be as large as possible. Liu et al. proposed a latent
low-rank representation (LatLRR) (Liu & Yan, 2011) method which
could use both observed data and hidden data to resolve insuffi-
cient sampling problems existed in LRR. Zhang et al. claimed that
the low-rank representations of nearby data points should be sim-
ilar to each other. Hence, they proposed a regularized low-rank
representation (rLRR) framework (Zhang, Yan, & Zhao, 2014) by
adding a Laplacian regularization term into the objective function
of LatLRR. Hu et al. analysed the group effect of the existing repre-
sentation methods and proposed a kind of smooth representation
clustering algorithm (Hu et al., 2014). These algorithms achieved
the state-of-the-art results in different kinds of subspace segmen-
tation tasks.

On the other hand, feature extraction or dimensionality
reduction (Belhumeur, Hespanha, & Kriegman, 1997; He, Yan, Hu,
Niyogi, & Zhang, 2005; Martinez & Avinash, 2001; Yan et al.,
2007) is a necessary preliminary for practical data processing.
Feature extraction algorithms aim to find low-dimensional sub-
spaces in which the structures of data sets can be easily recovered.
Hence, it becomes a natural idea to combine feature extraction
algorithms and representation coefficient based subspace segmen-
tation algorithms together. Recently, Patel et al. proposed an
extension of SSC, termed latent space sparse subspace clustering
(LS3C) algorithm (Patel, Nguyen, & Vidal, 2013). For a data set,
LS3C learns a low-dimensional space and a sparse coefficient
matrix simultaneously. In the obtained low-dimensional space,
SSC can achieve much better results.

Though the experiments show that LS3C outperforms SSC, the
theoretical explanation has not been provided. In this paper, we
would show the relationships between LS3C and robust coding
methods (He, Zheng, & Hu, 2011; Lai, Dai, Ren, & Huang, 2014;
Yang, Zhang, Yang, & Zhang, 2011). Based on our analyses, it can
be seen that LS3C is a special case of robust sparse coding methods.
This can explain the reason why LS3C is superior to SSC. However,
similar to SSC, l1-norm graphs obtained by LS3C are still insuffi-
cient to characterize the global structures of data sets, we therefore
propose a new latent space learning method for subspace

segmentation based on low-rank constraint. According to the
analyses on robust coding methods, the proposed algorithm can
be viewed as a kind of robust low-rank representation method
(Chen & Yang, 2014). Moreover, though low-rank constraint is
helpful to reveal the global structures of data sets, local structures
are also useful in subspace segmentation (He et al., 2011). Hence,
we devise a weighted l1-norm regularizer in the objective function
of our proposed algorithm to capture the local structures. Thus our
algorithm is termed latent space robust subspace segmentation
based on low-rank and locality constraints (LSRS2). The experi-
ments conducted on both synthetic and real data sets prove the
conclusion that LSRS2 is superior to LS3C and the related represen-
tation coefficient based subspace segmentation algorithms. The
contributions of this paper can be summarized as follows:

1. We build the connections between LS3C and robust coding
methods, consequently explain the success of LS3C;

2. From the point of view of robust low-rank representation, we
put forward a new latent space robust subspace segmentation
method based on low-rank constraint;

3. We devise a weighted l1-norm regularizer to help the proposed
algorithm to capture the local structures of data sets.

The rest of this paper is organized as follows: Section 2 briefly
reviews SSC and LS3C algorithms. Section 3 introduces the ideas
of robust coding methods. And we will show the connections
between LS3C and robust coding methods. Following the analyses
presented in the Section 3, we propose the latent space robust sub-
space segmentation based on low-rank and locality constraints
(LSRS2) algorithm in Section 4. We also describe the differences
between LSRS2 and the closely related algorithms. In addition,
the optimization approach and the proof for its convergence are
presented in this section. The extensive experiments performed
to show the effectiveness of LSRS2 are presented in Section 5.
Finally Section 6 gives the conclusions.

2. Latent space sparse subspace clustering (LS3C)

In this section, we will review LS3C briefly. LS3C algorithm is
devised under the framework of SSC. We first introduce SSC
method.

2.1. Sparse subspace clustering (SSC)

SSC uses SR to construct the affinity graph for a group of data.
Suppose the data set X ¼ ½x1;x2; . . . ;xn� 2 RD�n. According to the
SR theory, each sample xi 2 X can be linearly represented by using
as few as possible the rest samples in X. This purpose can be
expressed as follows:

min
zi

kxi � Xzik2
2 þ kkzik1 s:t: zii ¼ 0; ð1Þ

where zi is the coefficient vector which also reveals the relationship
between xi and the rest samples, zii is the ith element of zi. Eq. (1) is
also called LASSO1 (Tibshirani, 1996). kzik1 ¼

Pn
j¼1jzijj is the l1-norm

of zi. Considering all the data points in X, we can get the following
optimization problem:

min
Z
kX� XZk2

F þ kkZk1 s:t: diagðZÞ ¼ 0; ð2Þ

where k � kF denotes the Frobenius norm. For a certain matrix

A 2 Rm�n, its Frobenius norm kAkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

i¼1

Pn
j¼1½A�

2
ij

q
; ½A�ij represents

1 A typical LASSO problem could be expressed as minzkx�Dzk2
2 þ kkzk1, where

D ¼ ½d1;d2; � � � ;dm� is the dictionary, di is the ith column of D; z is the coefficient
vector.
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