
Comparisons of machine learning techniques for detecting malicious
webpages

H.B. Kazemian ⇑, S. Ahmed
Intelligent Systems Research Centre, School of Computing, London Metropolitan University, United Kingdom

a r t i c l e i n f o

Article history:
Available online 16 September 2014

Keywords:
K-Nearest Neighbor
Support Vector Machine
Naive Bayes
Affinity Propagation
K-Means
Supervised and unsupervised learning

a b s t r a c t

This paper compares machine learning techniques for detecting malicious webpages. The conventional
method of detecting malicious webpages is going through the black list and checking whether the web-
pages are listed. Black list is a list of webpages which are classified as malicious from a user’s point of
view. These black lists are created by trusted organizations and volunteers. They are then used by modern
web browsers such as Chrome, Firefox, Internet Explorer, etc. However, black list is ineffective because of
the frequent-changing nature of webpages, growing numbers of webpages that pose scalability issues
and the crawlers’ inability to visit intranet webpages that require computer operators to log in as authen-
ticated users. In this paper therefore alternative and novel approaches are used by applying machine
learning algorithms to detect malicious webpages. In this paper three supervised machine learning
techniques such as K-Nearest Neighbor, Support Vector Machine and Naive Bayes Classifier, and two
unsupervised machine learning techniques such as K-Means and Affinity Propagation are employed.
Please note that K-Means and Affinity Propagation have not been applied to detection of malicious web-
pages by other researchers. All these machine learning techniques have been used to build predictive
models to analyze large number of malicious and safe webpages. These webpages were downloaded
by a concurrent crawler taking advantage of gevent. The webpages were parsed and various features such
as content, URL and screenshot of webpages were extracted to feed into the machine learning models.
Computer simulation results have produced an accuracy of up to 98% for the supervised techniques
and silhouette coefficient of close to 0.96 for the unsupervised techniques. These predictive models have
been applied in a practical context whereby Google Chrome can harness the predictive capabilities of the
classifiers that have the advantages of both the lightweight and the heavyweight classifiers.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Web security threats are increasing day by day (Facebook,
2010; Malware, 2011; Sood & Enbody, 2011). The open nature of
the Internet allows malicious webpages to pose as ‘safe webpages’
and consequently some users are misled to think that these
webpages are safe.

As the use and the speed of the Internet increased over the last
two decades, web developers have increased the usage of images,
JavaScript and other elements. The Google search engine is a clear
example. At the beginning, it had very few elements. There are now
more elements, graphics, stylesheets and the HTML specifications
which have been added as time went on. Initially, the only way
to create a webpage was by static HTML. JavaScript was then added
for user interactivity. ActiveX, Silverlight, Java Applets, etc. were
further added to include features. For example, ActiveX allowed

browsers to host various executables which enabled users to read
PDF and various other file formats such as Flash, DivX, etc. Web
developers started using the integrated development environ-
ments that generated a considerable HTML markup language and
this increased the HTML payload. The number of browsers
increased and some of these browsers, especially Internet Explorer
had their own quirks and needed more work from the developers.
These factors raised the complexity of the webpages that led to
potential increase in how webpages are ‘adversely affected’ and
have become malicious.

Cross Site Scripting (XSS) injects malicious code from an
unexpected source. These malicious codes can get hold of the
cookies, browsing history and then send them over to the mali-
cious webpage. Thus the user’s privacy is jeopardized. There have
been many attempts to prevent this sort of attacks (Lucca,
Fasolino, Mastoianni, & Tramontana, 2004). XSS not only affects
the user but also it affects the server. The webpage is used as
the vehicle to transfer infections to multiple users. The malicious

http://dx.doi.org/10.1016/j.eswa.2014.08.046
0957-4174/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.

Expert Systems with Applications 42 (2015) 1166–1177

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.08.046&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.08.046
http://dx.doi.org/10.1016/j.eswa.2014.08.046
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


code then executes in the user’s browser. The problem has been
intensified with the addition of scripting capabilities that did
not exist at the beginning of the history of web browsing. With
the addition of scripting capabilities, the users are benefitting
with a better user experience but have become prone to these
additional security problems. These scripts run on users’ brows-
ers. The web developer may build a webpage only using HTML,
but an attacker can still inject scripts to make it susceptible to
scripts. These scripts can then access the cookies that are used
for authentication. The XSS vulnerability therefore affects the
users and the webpages. Take for example, a user visits a web-
page and decides to purchase a product. The user adds the items
to the basket and would like to checkout. Then he fills in a form
to register. Each of these users is uniquely identifiable by the
webpage through the use of cookies. The criminal will be able
to look at the cookies and impersonate the user and buy the prod-
ucts, without the knowledge of the user. By the time the user has
realized the problem, the money has already been dispatched
from the user’s account.

Almost all HTML tags are wrapped by ‘greater than’ and ‘less
than’. To write the script tag, these two characters are needed.
There are several combinations of characters that can be generated
(Braganza, 2006). The combinations are quite vast and will likely to
increase. The combinations of letters that generate the letters are
dependent on browser version and the default language.
Braganza (2006) states that the browser cannot be trusted because
of these extensive possibilities and some precautions are required.
To cleanse, data entered are encoded and data displayed are both
decoded, this process is known as ‘sanitization’. In terms of how
the webpage is deployed to the user, the operations team have to
make sure that the firewall or any other forms of preventative
measures are kept up to date. Another security threat that is very
difficult to detect is clickjacking. This is a relatively new threat that
has become more prevalent through the advancement of modern
browsers. The interesting thing about clickjacking is that it does
not use security vulnerabilities, rather uses the browsers most
common feature such as hyperlinks. The user is encouraged to click
a link to a webpage. But this webpage has two webpages one is dis-
played to the user and the other one the malicious webpage which
is hidden from the user (Hansen & Grossman, 2008). The hidden
webpage executes the malicious code even though the user thinks
that the information is on the right webpage. This technique is very
hard to detect by inspecting the source code and there have not
been many successful ways to prevent it from happening.

Drive-by-download occurs without the knowledge of a user and
the downloaded file is used for malicious purposes. This malicious
executable installs itself on users’ computer. This is a very popular
method that has been used by Harley and Bureau (2008) to spread
malware infection on the Internet. There are three components in
the attack, the web server, the browser and the malware. An
attacker finds a web server to serve the malware. The user who vis-
its a webpage hosted in this web server is then exploited by the
webpage, and some code utilizes software loopholes to execute
commands on the user’s browser are injected. The web server sub-
sequently provides the malware that is downloaded by the brow-
ser. As a result, the browser that is targeted will have a known
vulnerability that the attacker will try to exploit. Internet Explorer
had many instances of ActiveX loopholes that the attackers had
used and are still using and Harley and Bureau (2008) have pro-
vided potential solutions. The first solution is to completely isolate
the browser from the operating system so that the arbitrary codes
are not at all executed on the browser. Another solution is for web
crawlers to visit webpage and see whether they are hosting any
malware content. But the attackers can avoid by using a URL that
does not have a corresponding hyperlink. Crawlers by its nature
only visit URLs that have a corresponding hyperlink.

Browsers these days use publicly available blacklists of mali-
cious webpages. These blacklists are updated after a few days or
even a month. These gaps allow for webpages to be affected while
being unnoticed to the crawler. At this point, the users will also get
affected, because the browser thinks the webpage to be secure, as
it has never been in the blacklist. Take another scenario where a
regular webpage may be hacked and injected with malicious code
visible only to some users or a group of users of an organization or
a country. The blacklists will not be able to ‘blacklist’ those either.
Some crawlers do not validate the JavaScript code because the code
is executed on the server and not in a browser. This allows client
vulnerabilities to pass through easily. Even though some of the
scripts which are assumed to be safe, these scripts can load mali-
cious scripts remotely and then execute them on the computer.
Some scripts create iFrames and then load external webpages that
are malicious (Provos, Mavrommatis, Rajab, & Monrose, 2008).
These external webpages then gets hold of the cookies and steal
the identity. The users then browse this malicious webpage and
get infected and are then easily tracked by remote users from
somewhere else. The users also may run malicious executables
without even knowing that the executables have already access
to the system and are monitored from somewhere else. Webpages
are the common victims to all these threats that have been
described above. The features in a webpage can indicate whether
it is malicious or not. Researchers have studied and analyzed a
large number of features with or without machine learning tech-
niques described below.

Kan and Thi (2005) carried out one of the first research work that
utilized machine learning to detect malicious webpages. This work
ignored webpage content and looked at URLs using a bag-of-words
representation of tokens with annotations about the tokens’ posi-
tions within the URL. A noteworthy result from Kan and Thi’s
research is that lexical features can achieve 95% accuracy of the
page content features. Garera, Provos, Chew, and Rubin (2007)s
work used logistic regression over 18 hand selected features to clas-
sify phishing URLs. The features include the presence of red flag key
words in the URL, features based on Google’s page ranking, and
Google’s webpage quality guidelines. Garera et al. achieved a classi-
fication accuracy of 97.3% over a set of 2500 URLs. Although this
paper has similar motivation and methodology, it differs by trying
to detect all types of malicious activities. This paper also uses more
data for training and testing, as described in the subsequent sec-
tions. Spertus (1997) suggested an alternative approach and
endeavored to identify malicious webpages, Cohen (1996)
employed the decision trees for detection and Dumais, Platt,
Heckerman, and Sahami (1998) utilized inductive learning algo-
rithms and representations for text categorization. Guan, Chen,
and Lin (2009) focused on classifying URLs that appear in webpages.
Several URL-based features were used such as webpage timing and
content. This paper has used similar techniques but applied them to
webpages which have much more complex structures with better
accuracies. Mcgrath and Gupta (2008) did not construct a classifier
but performed a comparative analysis of phishing and non-phish-
ing URLs. With respect to data sets, they compared non-phishing
URLs drawn from the DMOZ Open Directory Project to phishing
URLs from Phishtank (2013) and a non-public source. The features
they analyzed included IP addresses, WHOIS thin records (contain-
ing date and registrar provided information only), geographic infor-
mation, and lexical features of the URL (length, character
distribution and presence of predefined brand names). The differ-
ence is that this paper utilizes different types of features to add to
the novelty. Provos et al. (2008) carried out a study of drive-by
exploit URLs and used a patented machine learning algorithm as a
pre-filter for virtual machine (VM) based analysis. This approach
is based on heavyweight classifiers and is time consuming. Provos
et al. (2008) used the following features in computer simulation,

H.B. Kazemian, S. Ahmed / Expert Systems with Applications 42 (2015) 1166–1177 1167



Download English Version:

https://daneshyari.com/en/article/10321897

Download Persian Version:

https://daneshyari.com/article/10321897

Daneshyari.com

https://daneshyari.com/en/article/10321897
https://daneshyari.com/article/10321897
https://daneshyari.com

