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a b s t r a c t

The paper presents an empirical comparison of the most prominent nonlinear manifold learning tech-
niques for dimensionality reduction in the context of high-dimensional microarray data classification.
In particular, we assessed the performance of six methods: isometric feature mapping, locally linear
embedding, Laplacian eigenmaps, Hessian eigenmaps, local tangent space alignment and maximum var-
iance unfolding. Unlike previous studies on the subject, the experimental framework adopted in this work
properly extends to dimensionality reduction the supervised learning paradigm, by regarding the test set
as an out-of-sample set of new points which are excluded from the manifold learning process. This in order
to avoid a possible overestimate of the classification accuracy which may yield misleading comparative
results. The different empirical approach requires the use of a fast and effective out-of-sample embedding
method for mapping new high-dimensional data points into an existing reduced space. To this aim we pro-
pose to apply multi-output kernel ridge regression, an extension of linear ridge regression based on kernel
functions which has been recently presented as a powerful method for out-of-sample projection when
combined with a variant of isometric feature mapping. Computational experiments on a wide collection
of cancer microarray data sets show that classifiers based on Isomap, LLE and LE were consistently more
accurate than those relying on HE, LTSA and MVU. In particular, under different experimental conditions
LLE-based classifier emerged as the most effective method whereas Isomap algorithm turned out to be the
second best alternative for dimensionality reduction.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Dimensionality reduction methods attempt to provide mean-
ingful low-dimensional representations of high-dimensional data.
They may prove quite useful to deal with both unsupervised tasks,
such as clustering or data visualization, and supervised learning,
where they can speed up the training time and increase the predic-
tion accuracy.

Microarray data classification is a rather attractive domain for
dimensionality reduction. The collection of gene expression
profiles from microarray experiments usually results in high-
dimensional data sets composed by a huge number of features
(genes) and a relatively few number of distinct examples (pa-
tients). The classification of these data sets represents a computa-
tionally intensive task often affected by the curse of dimensionality
(Bellman, 1961), that may deeply benefit in terms of efficiency and
accuracy from dimensionality reduction as a preliminary step.

Beside linear methods, such as principal component analysis
(Jolliffe, 1986) and metric multidimensional scaling (Cox & Cox,

1994), nonlinear dimensionality reduction techniques, able to tackle
data sets with underlying nonlinear structures, have been more re-
cently proposed. Within the family of nonlinear algorithms manifold
learning methods have drawn great interest, by providing consider-
able results on artificial and real world data sets especially for data
visualization. They include, among others, isometric feature map-
ping (Isomap) (de Silva & Tenenbaum, 2002; Tenenbaum, de Silva,
& Langford, 2000), locally linear embedding (LLE) (Roweis & Saul,
2000; Saul & Roweis, 2003), Laplacian eigenmaps (LE) (Belkin &
Niyogi, 2000), Hessian eigenmaps (HE) (Donoho & Grimes, 2003),
local tangent space alignment (LTSA) (Zhang & Zha, 2004) and
maximum variance unfolding (MVU) (Weinberger & Saul, 2004).

Manifold learning methods attempt to recover the low dimen-
sional manifold along which data are supposed to lie. Formally, gi-
ven a set of data points Sm ¼ fxi; i 2 M ¼ f1;2; . . . ;mgg � Rn

arranged along a smooth nonlinear manifold M of intrinsic dimen-
sion d, with d� n, they aim at finding a function f : M ! Rd map-
ping Sm into Dm ¼ fzi; i 2M ¼ f1;2; . . . ;mgg � Rd such that some
geometrical properties of the data in the input space are preserved
in the reduced space. These techniques are often referred to as
spectral embedding methods (Weinberger & Saul, 2004) since they
convert the dimensionality reduction problem into the eigen-
decomposition of a symmetric positive semidefinite matrix.
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In this paper we perform a systematic empirical comparison of
the most prominent nonlinear manifold learning methods in the
context of high-dimensional data classification. The experimental
framework entailed in our work differs significantly from the one
considered in previous studies (Bartenhagen, Klein, Ruckert, Jiang,
& Dugas, 2010; van der Maaten, Postma, & Herik, 2009), in which
every data set is entirely projected in the low-dimensional space
before being separated into training and test set. This approach
may cause an overestimate of the classification accuracy on the
test set whose points have been unfairly used for the manifold
reconstruction, and may yield misleading results in the compara-
tive evaluation. Our computational framework more properly ex-
tends to dimensionality reduction the supervised learning
paradigm, by regarding the test set as an out-of-sample set of
new points which are excluded from both the manifold learning
process and the training phase. More precisely, the evaluation
scheme is based on a three-step procedure: each data set is first di-
vided into pairs of training and test sets and, for each pair, the d-
dimensional embedding of the training points is computed. Then,
the function mapping the training set into its projection is induc-
tively approximated and is used to find the low-dimensional repre-
sentation of the corresponding test set. Finally, a generic classifier
is trained on the projected training set and its accuracy is esti-
mated on the embedded test set.

Notice that this different perspective requires a fast and accurate
method for embedding new high-dimensional data points into an
existing reduced space. To this aim we resort to multi-output kernel
ridge regression (KRR), an extension of linear ridge regression based
on kernel functions which has been recently proposed for out-of-
sample mapping in (Orsenigo & Vercellis, 2012b). KRR has proven
to be very effective when combined with a supervised variant of
Isomap in the classification of a broad collection of real world data
sets. Indeed, it outperformed generalized regression neural net-
works which have been generally adopted by previous studies.

The remainder of the paper is organized as follows. Section 2
offers an overview of the nonlinear manifold learning methods
involved in the empirical comparison. Section 3 describes multi-
output kernel ridge regression for out-of sample mapping. Section
4 illustrates the experimental settings. Section 5 presents the com-
parative results concerning the classification of a wide range of
cancer microarray data sets. Conclusions are discussed in Section 6.

2. Nonlinear manifold learning methods

This section provides a brief description of the manifold learn-
ing techniques considered in this study. Our attention was devoted
to those methods which find a low-dimensional representation by
preserving global or local geometrical properties of the data. Note
that almost all algorithms are based on a common framework. A
sparse matrix is first derived from a weighted neighborhood graph
whose nodes correspond to data points and edges represent neigh-
borhood relations. The embedding in the low d-dimensional space
is then obtained by computing the d eigenvectors associated with
the d largest or smallest nonzero eigenvalues of this matrix.

In what follows, let X denote the m � n matrix whose rows rep-
resent the input vectors xi,Z the corresponding m � d matrix
whose rows are the projected vectors zi, K a square d-dimensional
diagonal matrix of eigenvalues (k1,k2, . . . ,kd), V the m � d matrix of
associated eigenvectors (v1,v2, . . . ,vd), Id the identity matrix of size
d and 1 a m-dimensional vector of ones.

2.1. Isometric feature mapping

Isometric feature mapping (Isomap) represents a generalization
of metric multidimensional scaling (MDS) to nonlinear manifolds.

Unlike classical MDS which attempts to preserve the Euclidean dis-
tance between data points, Isomap finds an embedding in which
the geodesic distance between two points in the input space is as
close as possible to the Euclidean distance between their projec-
tions in the target space. The geodesic distance is defined by the
length of the shortest curve connecting two points on the underly-
ing manifold. It is estimated by the shortest path computed be-
tween the corresponding vertices in a weighted neighborhood
graph, in which every data point is connected to its k nearest
neighbors and the weight of an edge equals the Euclidean distance
of its endpoints.

Let DG denote the matrix of the geodesic distances between the
points in the neighborhood graph. The embedding into the d-
dimensional space is computed by minimizing the function

ksðDGÞ � sðDZÞkF ; ð1Þ

where DZ = [dij] is the matrix of pairwise Euclidean distances
dij = kzi � zjk of the data projections in Rd, the s operator converts
distances to inner products and k�kF denotes the Frobenius norm
of a matrix. The global minimum of (1) is achieved by computing
the d eigenvectors associated to the d largest eigenvalues of the
geodesic distances matrix s(DG), and by setting the projections
Z = VK1/2.

Within the original Isomap algorithm two alternative criteria
for defining the neighborhood of each point xi were proposed:
searching for the k nearest neighbors in terms of the Euclidean dis-
tance or choosing all points lying within a fixed-radius hyper-
sphere centered on xi. Both methods suffer from drawbacks,
resulting in instability and low robustness for data sets affected
by noise, outliers or scarcity of examples, since these conditions
may generate short-circuits within the manifold that distort the
low-dimensional embedding (Balasubramanian, Schwartz, Tenen-
baum, de Silva, & Langford, 2002). Alternative approaches have
been proposed to overcome this problem, by taking into account
the density of each point to properly modify the distances in the
input space (de Silva & Tenenbaum, 2002), by using adaptive pro-
cedures for generating the neighborhoods (Wei, Peng, Lin, Huang,
& Wang, 2008; Zhan, Yin, Liu, & Zhang, 2009) or by resorting
to double-bounding rules capable of preventing short-circuits
(Orsenigo & Vercellis, 2012a). Furthermore, it has been shown that
isometric feature mapping may fail in case of nonconvex manifolds
(Tipping, 2000).

Despite these weaknesses Isomap has been successfully applied
to the analysis of high-dimensional biomedical data (Dawson,
Rodriguez, & Malyj, 2005; Park, 2012; Weng, Zhang, Lin, & Zhang,
2005). In the context of classification a supervised extension has
been also proposed in which the distances between points are
modified according to their labels (Geng, Zhan, & Zhou, 2005).

2.2. Locally linear embedding

Locally linear embedding (LLE) attempts to recover the global
structure of nonlinear manifolds from locally linear fits, so to pre-
serve the local geometry of the input data in the low-dimensional
space.

Once the neighborhood graph is constructed based on the
Euclidean distance, LLE represents each point xi as a linear combi-
nation of its neighbors

xi ¼
X
j2Ki

wijxj; i 2M; ð2Þ

whereKi is the set of indices of the k nearest neighbors of xi, and the
generic weight wij highlights the role of neighbor j in the
reconstruction of point i. The weight coefficients for all data points
are then computed by minimizing the function
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