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a b s t r a c t

Previous studies about ensembles of classifiers for bankruptcy prediction and credit scoring have been
presented. In these studies, different ensemble schemes for complex classifiers were applied, and the best
results were obtained using the Random Subspace method. The Bagging scheme was one of the ensemble
methods used in the comparison. However, it was not correctly used. It is very important to use this
ensemble scheme on weak and unstable classifiers for producing diversity in the combination. In order
to improve the comparison, Bagging scheme on several decision trees models is applied to bankruptcy
prediction and credit scoring. Decision trees encourage diversity for the combination of classifiers.
Finally, an experimental study shows that Bagging scheme on decision trees present the best results
for bankruptcy prediction and credit scoring.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In supervised classification tasks, the combination or ensemble
of classifiers represents an interesting way of merging information
that can provide a better accuracy than each individual method.
The high classification accuracy performance of these combined
methods makes them very suitable for real world applications,
such as bankruptcy prediction and credit scoring.

In the paper of Nanni and Lumini (2009) it is presented an inter-
esting analysis about previous papers on bankruptcy prediction
and credit scoring. The importance of this type of real application
is well exposed: (a) The credit scoring models permit to discrimi-
nate between good credit group and bad credit group; (b) Develop-
ing a reliable credit scoring system offers several benefits,
including cost reduction of credit analysis, delivery of faster deci-
sions, guaranteed credit collection, and risk mitigation.

In this paper (Nanni & Lumini, 2009), the authors analyzed
some well established financial decision-making methods based
on machine learning to solve the financial decision-making
problems mentioned above. In that work, the individual methods
providing better performance were based on Artificial Neural
Networks (ANNs). They also presented a thorough study about sev-
eral techniques to create ensembles of classifiers based on some
complex classifiers, including ANNs. All of them were applied to
data sets related to the problem of bankruptcy prediction and

credit scoring, with the aim of outperforming previous works, like
in Tsai and Wu (2008).

It is important to highlight that some schemes to create classi-
fier ensembles do not have to be based on very complex and accu-
rate individual classifiers. For example, Bagging scheme (Breiman,
1996) is a well known procedure for creating ensembles of classi-
fiers that performs best when applied to weak and unstable classi-
fiers. However, this fact was forgotten in the previous studies
about bankruptcy prediction and credit scoring.

Decision trees (DTs) represent a family of simple classifiers that
can be built in very little time and have a simple structure which
can be interpreted easily. An important aspect of DTs, which make
them very suitable for ensembles of classifiers, is their instability:
Different training sets from a given problem domain will produce
very different models. Hence, DTs encourage diversity for the com-
bination of classifiers (Breiman, 1996) and provide an excellent
model for the Bagging ensemble scheme.

In Abellán and Masegosa (2012), it is shown that using Bagging
ensembles on a special type of decision trees, called credal decision
trees (CDTs) (Abellán & Moral, 2003b), provides an interesting
tool for the classification task. CDTs are based on imprecise
probabilities (more specifically, on the Imprecise Dirichlet Model
(IDM); see Walley, 1996) and information/uncertainty measures
(in particular, on the maximum of entropy function; see Klir,
2006, Abellán, 2011). An important characteristic of the CDT
procedure is that the split criterion used to build a DT has a
different treatment of the imprecision than the one used for the
classic split criteria.

Hence, the main purpose of this paper is to complete previous
works, especially the one presented in Nanni and Lumini (2009)
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about the use of Bagging ensembles on DTs. We show that the use
of CDTs in a Bagging scheme outperforms previous results for data
sets related to bankruptcy prediction and credit scoring. We have
used the same setting employed in Nanni and Lumini (2009): Same
data sets, same type of experimentation and same measure to
compare results. Moreover, we have used known statistical tests
to support our results.

In order to compare the performance of the mentioned proce-
dures in a logical way, we have used the best ensemble method
described in previous works (the Random Subspace ensemble pro-
cedure (Ho, 1998)) and the Bagging scheme on DTs. In addition, the
trees were built with the most successful classification method
based on DTs: Quinlan’s C4.5 algorithm (Quinlan, 1993); and the
mentioned CDT procedure (Abellán & Moral, 2003b).

This paper is organized as follows: In Section 2, we present the
necessary background about DTs, CDTs, ensemble methods and
previous works made on data sets concerning bankruptcy predic-
tion and credit scoring; in Section 3, we describe and comment
on the results of the experiments carried out; and finally, Section 4
presents the conclusions.

2. Background

2.1. Decision trees

The classification task is focused on elements that are described
by one or more characteristics, known as attribute variables (also
called predictive attributes or features), and by a single class variable,
with the aim to predict the class value of a new element by consid-
ering its attribute values.

Decision trees (also known as Classification Trees or hierarchi-
cal classifiers) started to play an important role in machine learn-
ing since the publication of Quinlan’s Iterative Dichotomiser 3,
known as ID3 (Quinlan, 1986). Subsequently, Quinlan also pre-
sented the Classifier 4.5, known as C4.5 (Quinlan, 1993), which is
an advanced version of the ID3. Since then, C4.5 has been consid-
ered as a standard model in supervised classification. They have
also been widely applied as a data analysis tool to very different
fields, such as astronomy, biology, medicine, etc.

Decision trees are models based on a recursive partitioning
method that divides the data set using a single variable at each
level. This variable is selected by means of a given criterion. Ideally,
these models define sets of cases in which all the cases in a set
belong to the same class.

Their knowledge representation has a simple tree structure. It
can be interpreted as a compact rule set in which each node of
the tree is labeled with an attribute variable that produces a differ-
ent branch for each variable value (i.e., a partition of the data set).
Leaf nodes are labeled with a class label.

The process for inferring a decision tree is mainly determined
by the following points: (i) The criteria used to select the attribute
that should be placed in a node and branched; (ii) The criteria for
stopping the tree branching process; (iii) The method for assigning
a class label or a probability distribution to the leaf nodes; and (iv)
The posterior pruning process used to simplify the tree structure.

Many different approaches for inferring decision trees, which
depend upon the aforementioned factors, have been published.
Quinlan’s ID3 (Quinlan, 1986) and C4.5 (Quinlan, 1993) stand out
among the most popular ones.

Decision trees are built using a data set referred to as the train-
ing data set. A different set, called the test data set, is used to check
the model. When we get a new sample or instance of the test data
set, we can make a decision or prediction about the state of its class
variable, following the path in the tree from the root to a leaf node
using the sample values and the tree structure.

2.2. Credal decision trees

2.2.1. Mathematical foundations
The split criterion employed to build CDTs (Abellán & Moral,

2003b) is based on the application of uncertainty measures on con-
vex sets of probability distributions (credal sets). Specifically, prob-
ability intervals are extracted from the data set for each case of the
class variable using Walley’s Imprecise Dirichlet Model (IDM)
(Walley, 1996), which represents a specific kind of convex set of
probability distributions (see Abellán, 2006a).

The IDM depends on a given hyperparameter s which does not
depend on the sample space (Walley, 1996). The IDM estimates
that the probabilities for each value of the class variable C are with-
in an interval defined by:

pðcjÞ 2
ncj

N þ s
;
ncj
þ s

N þ s

� �
; j ¼ 1; . . . ; k;

with ncj
as the frequency of the set of values ðC ¼ cjÞ in the data set,

N the sample size and k the number of cases in class variable C. One
important thing is that intervals are wider if the sample size is
smaller. So this method produces more precise intervals as N
increases.

Walley (1996) does not give a definitive recommendation for
the value of the parameter s, but he suggests two candidates:
s ¼ 1 or s ¼ 2. In our case, we will use a value s ¼ 1. The reason
for this is the low computational cost of the inference with credal
sets for s ¼ 1, as it will be shown in the following paragraph.

The entropy of this set of probability intervals will be estimated
as the maximum of the entropy of all probability distributions
ðqðc1Þ; . . . ; qðckÞÞ verifying that, for any ci; qðciÞ belongs to the esti-
mated interval for pðciÞ. For s ¼ 1 this entropy is very simple to
compute. First, we have to determine A ¼ fcj : ncj

¼minifnci
gg. If

l is the number of elements of A, then the distribution with maxi-
mum entropy is p�, where p�ðciÞ ¼

nci
Nþs if ci R A and p�ðciÞ ¼

nci
þs=l

Nþs if
ci 2 A.

This upper entropy function, denoted as S�, is a total uncertainty
measure which is well known for this type of set (see Abellán &
Moral, 2003a; Abellán, Klir, & Moral, 2006; Abellán & Masegosa,
2008).

As the intervals are wider with smaller sample sizes, there will
be a tendency to get greater maximum entropy values with smaller
sample sizes. This property will be important to differentiate the
action of the CDTs from the behavior of other kinds of DTs.

For example, if we assume k ¼ 2, then the information obtained
from a node A with nc1 ¼ 400 and nc2 ¼ 100 will be more reliable
than that provided by a node B with nc1 ¼ 4 and nc2 ¼ 1, since
the first node has a larger sample size. This fact is taken into
account by the maximum entropy function (the first node will have
the lowest uncertainty); in contrast, using classic entropy both
nodes will have the same uncertainty.

Using S to denote the classic entropy function on a probability
distribution p, and KA;KB to denote the sets of probabilities via
the IDM (with s ¼ 1) associated to nodes A and B mentioned above,
we have that:

S
400
500

;
100
500

� �
¼ S

4
5
;
1
5

� �
¼ 0:5004;

S�ðKAÞ ¼ 0:5025; S�ðKBÞ ¼ 0:6365

Hence

S
400
500

;
100
500

� �
¼ S

4
5
;
1
5

� �
ffi S�ðKAÞ < S�ðKBÞ;

This shows that the treatment of imprecision is clearly different
with the new split criterion based on imprecise probabilities of
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