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a b s t r a c t

This paper studies a nonlinear control policy for multi-period investment. The nonlinear strategy we
implement is categorized as a kernel method, but solving large-scale instances of the resulting optimiza-
tion problem in a direct manner is computationally intractable in the literature. In order to overcome this
difficulty, we employ a dimensionality reduction technique which is often used in principal component
analysis. Numerical experiments show that our strategy works not only to reduce the computation time,
but also to improve out-of-sample investment performance.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Risk management based on diversified investment makes it
possible to mitigate the risk of suffering a large loss while securing
a certain level of profitability, and portfolio selection accordingly
plays an important role in financial decision making (see, e.g.,
Cornuejols & Tütüncü, 2007). Portfolio selection is usually
conducted in a single-period framework, as initially formulated
by Markowitz (1952). It is, however, advantageous for investors
to periodically adjust their portfolios by following an effective
rebalancing strategy. In this respect, the traditional single-period
model is not sufficient. Indeed, Mulvey, Pauling, and Madey
(2003) state that multi-period models can enhance risk-adjusted
performance and help investors evaluate the probability of reach-
ing a certain target by linking asset and liability policies.

Among the various rebalancing strategies, constant rebalancing
reverts the investment proportion to the original proportion at the
beginning of every period. It is known that a constant rebalancing
strategy achieves the optimal growth rate of wealth on the assump-
tion that asset returns in each period are independent and identi-
cally distributed (see, e.g., Algoet & Cover, 1988). Due to this fact,
a number of studies (see, e.g., Fleten, Høyland, & Wallace, 2002;
Maranas, Androulakis, Floudas, Berger, & Mulvey, 1997; Takano &
Gotoh, 2011; Takano & Sotirov, 2012) have dealt with multi-period
portfolio optimization with the constant rebalancing strategy.

However, it has been demonstrated, e.g., in Jegadeesh and
Titman (1993), Lo and MacKinlay (1990), that stock returns are
serially dependent; therefore, it is probably effective to dynami-

cally rebalance the portfolio in view of the observed asset returns.
For instance, DeMiguel, Nogales, and Uppal (2013) improve the
out-of-sample investment performance of single-period models
by predicting future stock returns through the use of a vector auto-
regressive (VAR) model. More importantly, Fleten et al. (2002) have
shown by means of an out-of-sample simulation test that the sto-
chastic dynamic approach dominates the constant rebalancing
strategy. These observations motivated us to develop a rebalancing
strategy for exploiting the time-series dependence of stock returns.

Multi-period portfolio selection was first framed as a stochastic
control problem (see Infanger, 2006 for detailed references). In
general, however, it is very difficult to handle a stochastic control
problem of a practical size because it requires one to solve a
large-scale dynamic programing problem or partial differential
equations. The most popular framework for solving such problems
is provided by multi-stage stochastic programing models. Among
them the simulated path model (see, e.g., Hibiki, 2006) describes
multi-period scenarios of asset returns using a number of simu-
lated paths. The actual market behavior can be simulated in detail
by this model, but there is no room for conditional investment
decisions in this model due to what is called the ‘‘non-anticipativ-
ity condition,’’ which requires one to prevent investment decisions
from depending on future observations on each simulated path. By
contrast, the scenario tree model (see Steinbach, 2001 for detailed
references) enables one to make conditional investment decisions
in each future state; however, this model is disadvantageous in
that the size of the resultant optimization problem grows
exponentially as the number of time periods increases. The hybrid
model devised by Hibiki (2003) integrates the simulated path
model and the scenario tree model; nevertheless, it is still
computationally burdensome to make conditional investment
decisions in the hybrid model as well as in the scenario tree model.
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Under several assumptions about stochastic process of asset
returns, closed-form optimal solutions to stochastic control prob-
lems can be derived (see, e.g., DeMiguel, Martin-Utrera, & Nogales,
2013; DeMiguel, Mei, & Nogales, 2013; Garleanu & Pedersen,
2013). However, these assumptions often fail in simulating a com-
plicated market behavior accurately. Additionally, the presence of
portfolio composition constraints makes it harder to obtain a
closed-form optimal solution. Meanwhile, a number of studies
focus on numerical methods for approximately solving such a sto-
chastic control problem. Among them are approximate dynamic
programing (e.g., Boyd, Mueller, O’Donoghue, & Wang, 2012) and
model predictive control (e.g., Boyd et al., 2012; Yamada & Primbs,
2012). Besides, control actions are frequently prescribed by control
policies, which map past outcomes to the portfolio adjustments.
Most studies (Barmish & Primbs, 2012; Calafiore, 2008; Calafiore,
2009; Calafiore & Campi, 2005; Fonseca & Rustem, 2012; Moallemi
& Sağlam, 2012) only deal with linear control policies because
determining the best control policy generally leads to a computa-
tionally intractable optimization. Although these approaches are
computationally attractive, they can only attain a ‘‘sub-optimal’’
investment strategy.

On the other hand, the authors of the present paper build in Tak-
ano and Gotoh (2011) a computational framework based on the ker-
nel method for finding the best nonlinear control policy. Bhat,
Moallemi, and Farias (2012) also use the kernel method for a discrete
time Markov decision process. Such a kernel method is often
employed in machine learning for estimating nonlinear statistical
models (see, e.g., Schölkopf & Smola, 2001), and it enables one to
easily incorporate a nonlinear transformation in a non-parametric
manner. Since the computational model developed by Takano and
Gotoh (2011) is based on the stochastic programing, it can impose
practical constraints on the portfolio composition. Moreover, this
kernel-based non-parametric approach does not require any
assumptions about the underlying stochastic process of asset
returns. Note also that, in contrast to the sub-optimal strategies
mentioned above, the kernel-based control policy method selects
an investment strategy from a wider class of policies. With the kernel
method, we can extract the complex time-series dependence of asset
returns. Indeed, Bhat et al. (2012) and Takano and Gotoh (2011)
empirically show that kernel-based methods perform better than
other standard parametric methods (e.g., linear control policy).

In view of these facts, we shall employ the kernel-based control
policy in the multi-period portfolio selection problem. However,
we are yet confronted by two difficulties in using the kernel-based
control policy: Long computation time and overfitting. Indeed, the
experiments in Takano and Gotoh (2011) show that substantial
time is required even for small-sized problems, despite the fact
that the problem is formulated as a convex quadratic programing
problem. In addition, since the kernel approach admits a highly
nonlinear mapping, the resulting control policy may overfit the
noisy financial data used in the optimization problem. It has been
reported in Takano and Gotoh (2011) that such a overfitting weak-
ens out-of-sample performance of the kernel-based control policy.

The purpose of this paper is to devise a new approach for
efficiently solving the multi-period portfolio selection problem with
a kernel-based control policy (Takano & Gotoh, 2011) and for further
improving its investment performance. To this end, a method of
problem reduction is posed based on a dimensionality reduction
technique which is often used in principal component analysis
(PCA). More precisely, our application is directly related to what is
called kernel principal component analysis (kernel PCA), which is
an extension of PCA into a feature space of (possibly, infinitely) high
dimension (see, e.g., Schölkopf & Smola, 2001). Yajima, Ohi, and Mori
(2003) also use a dimensionality reduction technique to reduce the
problem size of a nonlinear support vector classification. Their

results encouraged us to apply a similar reduction method to our
multi-period portfolio selection problem. In addition, it has been
demonstrated, e.g., in Mika et al. (1998), that kernel PCA has an effect
of de-noising. This means that our dimensionality reduction tech-
nique has the potential of not just achieving a high degree of compu-
tation efficiency, but also improving investment performance.

We test the effectiveness of our approach through numerical
experiments with historical data on actual stock returns. Contribu-
tions of this paper are summarized as follows:

An efficient solution algorithm.
We develop an efficient solution algorithm based on the dimen-
sionality reduction technique. Numerical results show that the
proposed method sharply lessened the computation time.

Improvement in investment performance.
We improve investment performance with the dimensionality
reduction technique. Numerical experiments show that the dimen-
sionality reduction method enhanced the out-of-sample invest-
ment performance by avoiding overfitting.

The rest of the paper is organized as follows: Section 2 formulates
a multi-period portfolio selection model equipped with a kernel-
based control policy. Section 3 develops a method for reducing the
problem size by means of eigenvalue decomposition and formulate
an optimization problem in a reduced form. Numerical results are re-
ported in Section 4, and concluding remarks are given in Section 5.

2. Control policy for multi-period portfolio selection

In this section, after giving a mathematical description of port-
folio dynamics, we formulate the multi-period portfolio selection
problem with a kernel-based nonlinear control policy.

2.1. Preliminaries and portfolio dynamics

The terminology and notation used in this subsection are as
follows:

Index sets
I :¼ f1;2; . . . ; Ig : Index set of investable financial assets

(where asset 1 is cash)
S :¼ f1;2; . . . ; Sg : Index set of given scenarios (or

simulated paths)
T :¼ f1;2; . . . ; Tg : Index set of planning time periods

Decision variables
xi;sðtÞ : Investment amount in asset i at the end

of period t in scenario s
(i 2 I ; s 2 S; t 2 T )

uiðtÞ : Adjustment of asset i at the beginning of
period t (i 2 I ; t 2 T )

ui;sðtÞ : Adjustment of asset i at the beginning of
period t in scenario s
(i 2 I ; s 2 S; t 2 T n f1g)

vsðtÞ : Portfolio value at the end of period t in
scenario s (s 2 S; t 2 T )

aðtÞ : The value-at-risk (VaR) in period t
(t 2 T )

zsðtÞ : Auxiliary decision variable for
calculating the conditional value-at-risk
(CVaR) in period t (s 2 S; t 2 T )

Given constants
�xið0Þ : The initial holdings of asset i (i 2 I)
CðtÞ : Net cash flow at the beginning of period
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