
Automated generation of computationally hard feature models using
evolutionary algorithms

Sergio Segura a,1, José A. Parejo a,⇑, Robert M. Hierons b, David Benavides a, Antonio Ruiz-Cortés a

a Department of Computer Languages and Systems, University of Seville, Av Reina Mercedes S/N, 41012 Seville, Spain
b School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, Middlesex UB7 7NU, United Kingdom

a r t i c l e i n f o

Keywords:
Search-based testing
Software product lines
Evolutionary algorithms
Feature models
Performance testing
Automated analysis

a b s t r a c t

A feature model is a compact representation of the products of a software product line. The automated
extraction of information from feature models is a thriving topic involving numerous analysis operations,
techniques and tools. Performance evaluations in this domain mainly rely on the use of random feature
models. However, these only provide a rough idea of the behaviour of the tools with average problems
and are not sufficient to reveal their real strengths and weaknesses. In this article, we propose to model
the problem of finding computationally hard feature models as an optimization problem and we solve it
using a novel evolutionary algorithm for optimized feature models (ETHOM). Given a tool and an analysis
operation, ETHOM generates input models of a predefined size maximizing aspects such as the execution
time or the memory consumption of the tool when performing the operation over the model. This allows
users and developers to know the performance of tools in pessimistic cases providing a better idea of
their real power and revealing performance bugs. Experiments using ETHOM on a number of analyses
and tools have successfully identified models producing much longer executions times and higher mem-
ory consumption than those obtained with random models of identical or even larger size.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Software Product Line (SPL) engineering is a systematic reuse
strategy for developing families of related software systems
(Clements & Northrop, 2001). The emphasis is on deriving products
from a common set of reusable assets and, in doing so, reducing
production costs and time-to-market. The products of an SPL are
defined in terms of features where a feature is any increment in
product functionality (Batory, 2005). An SPL captures the common-
alities (i.e., common features) and variabilities (i.e., variant fea-
tures) of the systems that belong to the product line. This is
commonly done by using a so-called feature model. A feature model
(Kang, Cohen, Hess, Novak, & Peterson, 1990) represents the prod-
ucts of an SPL in terms of features and relationships amongst them
(see the example in Fig. 1).

The automated extraction of information from feature models
(a.k.a. automated analysis of feature models) is a thriving topic that
has received much attention in the last two decades (Benavides,
Segura, & Ruiz-Cortés, 2010). Typical analysis operations allow us
to know whether a feature model is consistent (i.e., it represents
at least one product), the number of products represented by a fea-
ture model, or whether a model contains any errors. Catalogues

with up to 30 analysis operations on feature models have been re-
ported (Benavides et al., 2010). Techniques that perform these
operations are typically based on propositional logic (Batory,
2005; Mendonca, Wasowski, & Czarnecki, 2009), constraint pro-
gramming (Benavides, Ruiz-Cortés, & Trinidad, 2005; White,
Schmidt, Benavides, Trinidad, & Ruiz-Cortés, 2008), or description
logic (Wang, Li, Sun, Zhang, & Pan, 2007). Also, these analysis capa-
bilities can be found in several commercial and open source tools
including AHEAD Tool Suite (2013), Biglever software gears
(2013), FaMa Framework (2013), Feature Model Plug-in (2013),
pure::variants (2013) and SPLOT (Mendonca, Branco, & Cowan
(2009)).

The development of tools and benchmarks to evaluate the per-
formance and scalability of feature model analysis tools has been
recognised as a challenge (Batory, Benavides, & Ruiz-Cortés,
2006; Benavides et al., 2010; Pohl, Lauenroth, & Pohl, 2011; She,
Lotufo, Berger, Wasowski, & Czarnecki, 2011). Also, recent publica-
tions reflect an increasing interest in evaluating and comparing the
performance of techniques and tools for the analysis of feature
models (Andersen, Czarnecki, She, & Wasowski, 2012; Henard,
Papadakis, Perrouin, Klein, & Traon, 2013; Heradio-Gil,
Fernandez-Amoros, Cerrada, & Cerrada, 2011; Johansen, Haugen,
& Fleurey, 2012; Mendonca et al., 2009; Lopez-Herrejon, Chicano,
Ferrer, Egyed, & Alba, 2013; Perrouin et al., 2012; Pohl et al.,
2011; Pohl, Stricker, & Pohl, 2013; Sayyad, Menzies, & Ammar,

0957-4174/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.eswa.2013.12.028

⇑ Corresponding author. Tel.: +34 954 556 881; fax: +34 954 557 139.
E-mail addresses: sergiosegura@us.es (S. Segura), japarejo@us.es (J.A. Parejo).

1 Principal corresponding author.

Expert Systems with Applications 41 (2014) 3975–3992

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2013.12.028&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2013.12.028
mailto:sergiosegura@us.es
mailto:japarejo@us.es
http://dx.doi.org/10.1016/j.eswa.2013.12.028
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


2013; Soltani, Asadi, Gasevic, Hatala, & Bagheri, 2012; Wang, Ali, &
Gotlieb, 2013). One of the main challenges when performing
experiments is finding tough problems that show the strengths
and weaknesses of the tools under evaluation in extreme situa-
tions, e.g., those producing longest execution times. Feature mod-
els from real domains are by far the most appealing input
problems. Unfortunately, although there are references to real fea-
ture models with hundreds or even thousands of features (Batory
et al., 2006; Loesch & Ploedereder, 2007; Steger et al., 2004), only
portions of them are usually available. This lack of hard realistic
feature models has led authors to evaluate their tools with large
randomly generated feature models of 5000 (Mendonca,
Wasowski, Czarnecki, & Cowan, 2008; White et al., 2008), 10,000
(Guo, White, Wang, Li, & Wang, 2011; Mendonca et al., 2009;
Thüm, Batory, & Kästner, 2009; White, Doughtery, & Schmidt,
2009) and up to 20,000 (Osman, Phon-Amnuaisuk, & Ho, 2009)
features. In fact, the size of the feature models used in experiments
has been increasing, suggesting that authors are looking for com-
plex problems on which to evaluate their tools (Benavides et al.,
2010). More recently, some authors have suggested looking for
hard and realistic feature models in the open source community
(Berger, She, Lotufo, Wasowski, & Czarnecki, 2010; Galindo,
Benavides, & Segura, 2010; Passos et al., 2011; She, Lotufo, Berger,
Wasowski, & Czarnecki, 2010; She et al., 2011). For instance, She
et al. (2011) extracted a feature model containing more than
5000 features from the Linux kernel.

The problem of generating test data to evaluate the perfor-
mance of software systems has been largely studied in the field
of software testing. In this context, researchers realised long ago
that random values are not effective in revealing the vulnerabili-
ties of a system under test. As pointed out by McMinn (2004):
‘‘random methods are unreliable and unlikely to exercise ‘deeper’ fea-
tures of software that are not exercised by mere chance’’. In this
context, metaheuristic search techniques have proved to be a
promising solution for the automated generation of test data for
both functional (McMinn, 2004) and non–functional properties
(Afzal, Torkar, & Feldt, 2009). Metaheuristic search techniques are
frameworks which use heuristics to find solutions to hard prob-
lems at an affordable computational cost. Examples of metaheu-
ristic techniques include evolutionary algorithms, hill climbing,
and simulated annealing (Voß, 2001). For the generation of test
data, these strategies translate the test criterion into an objective
function (also called a fitness function) that is used to evaluate
and compare the candidate solutions with respect to the overall
search goal. Using this information, the search is guided
toward promising areas of the search space. Wegener, Grimm,
Grochtmann, and Sthamer (1996) and Wegener, Sthamer, Jones,
and Eyres (1997) were one of the first to propose the use of
evolutionary algorithms to verify the time constraints of software

back in 1996. In their work, the authors used genetic algorithms
to find input combinations that violate the time constraints of
real-time systems, that is, those inputs producing an output too
early or too late. Their experimental results showed that evolu-
tionary algorithms are much more effective than random search
in finding input combinations maximising or minimising execu-
tion times. Since then, a number of authors have followed their
steps using metaheuristics and especially evolutionary algorithms
for testing non-functional properties such as execution time,
quality of service, security, usability or safety (Afzal et al., 2009;
McMinn, 2004).

1.1. Problem description

Current performance evaluations on the analysis of feature
models are mainly carried out using randomly generated feature
models. However, these only provide a rough idea of the average
performance of tools and do not reveal their specific weak points.
Thus, the SPL community lacks mechanisms that take analysis
tools to their limits and reveal their real potential in terms of per-
formance. This problem has negative implications for both tool
users and developers. On the one hand, tool developers have no
means of performing exhaustive evaluations of the strengths and
weaknesses of their tools making it hard to find faults affecting
their performance. On the other hand, users are not provided with
full information about the performance of tools in pessimistic cases
and this makes it difficult for them to choose the tool that best
meets their needs. Hence, for instance, a user could choose a tool
based on its average performance and later realise that it performs
very badly in particular cases that appear frequently in their appli-
cation domain.

In this article, we address the problem of generating computa-
tionally hard feature models as a means to reveal the performance
strengths and weaknesses of feature model analysis tools. The
problem of generating hard feature models has traditionally been
addressed by the SPL community by simply randomly generating
huge feature models with thousands of features and constraints.
That is, it is generally observed and assumed that the larger the
model the harder its analysis. However, we remark that these mod-
els are still randomly generated and therefore, as warned by soft-
ware testing experts, they are not sufficient to exercise the
specific features of a tool under evaluation. Another negative con-
sequence of using huge feature models to evaluate the perfor-
mance of tools is that they frequently fall out of the scope of
their users. Hence, both developers and users would probably be
more interested in knowing whether a tool may crash with a hard
model of small or medium size.

Finally, we may mention that using realistic or standard collec-
tions of problems (i.e., benchmarks) is equally insufficient for an

GPS

Routing Interface

MP3 player3D map view

Multimedia

Screen

LCDTouch

Mandatory

Optional

Alternative

Or

Requires

Excludes

Photo viewer

Traffic avoiding

Radar detector

Auto-rerouting Predictive entry Keyboard

Fig. 1. A sample feature model.

3976 S. Segura et al. / Expert Systems with Applications 41 (2014) 3975–3992



Download English Version:

https://daneshyari.com/en/article/10322083

Download Persian Version:

https://daneshyari.com/article/10322083

Daneshyari.com

https://daneshyari.com/en/article/10322083
https://daneshyari.com/article/10322083
https://daneshyari.com

