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a b s t r a c t

This study extends the sum of squares generally weighted moving average (SS-GWMA) control chart by
using the double generally weighted moving average (DGWMA) technique. The proposed expanded chart
is called the sum of squares double generally weighted moving average (SS-DGWMA) control chart. Sim-
ulations are performed to evaluate the average run length (ARL) and standard deviation of run length
(SDRL) of the SS-DGWMA, SS-DEWMA, and SS-GWMA charts. An extensive comparison shows that the
optimal SS-DGWMA chart is superior to the optimal SS-GWMA and SS-DEWMA charts in all studied sce-
narios. The SS-DGWMA chart is also easy to implement and to interpret the abnormal signals.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The major objectives of statistical process control (SPC) are to
maintain the stability of a process and to detect the occurrence
of assignable causes as early as possible. To achieve these objec-
tives control charts are used to monitor the performance of a
process and to improve the detection of abnormal process
behavior.

The concept of a control chart was first proposed by Shewhart
in the 1920s. Many researchers have since proposed various types
of control charts to track the process variation in the mean or var-
iance. Although the Shewhart-type chart remains the most popu-
lar chart in practice, it is not sensitive enough to detect small
process shifts. Advanced process-monitoring techniques such as
the exponentially weighted moving average (EWMA) or the
cumulative sum (CUSUM) control charts have therefore been
developed to compensate for the inefficiency of Shewhart control
charts.

Roberts (1959) first introduced the EWMA control chart to con-
trol the process mean. Later, the EWMA control chart was used to
monitor the process variance as well. Zhang and Chen (2005) ex-
tended the EWMA control chart to the double exponentially
weighted moving average (DEWMA) control chart and proved that
its detection ability was superior to that of the EWMA chart. To
detect small shifts in the process mean or variability as early as

possible, Sheu and Lin (2003) and Sheu and Tai (2006) developed
and applied an expanded EWMA control chart called the generally
weighted moving average (GWMA) control chart. Owing to an
added adjustment parameter a, GWMA charts were found to be
more sensitive than EWMA charts in detecting small process shifts.
Furthermore, Sheu and Hsieh (2009) extended the GWMA chart to
the double GWMA (DGWMA) chart. They also demonstrated that
the DGWMA control chart with time-varying control limits was
more sensitive than the GWMA and DEWMA control charts in
detecting medium shifts in the process mean when the standard
deviation of the shifts was between 0.5 and 1.5.

Traditionally, two control charts have been used to monitor
the mean and variance of a process. One is used for the process
mean and the other for the process variance. Commonly used
combination-type charts are the combined Shewhart charts,
combined EWMA charts, and combined GWMA charts. However,
the use of such charts is time consuming and can potentially
lead to increased costs. More recently, considerable attention
has been focused on the use of a single chart to monitor both
the process mean and variability. Domangue and Patch (1991)
developed an omnibus EWMA chart for simultaneously detecting
changes in both the location and spread of a process. Xie (1999)
presented several different types of EWMA charts such as Max-
EWMA, sum of squares EWMA (SS-EWMA), EWMA-Max, and
EWMA semicircle (EWMA-SC). Chen, Cheng, and Xie (2001)
and Chen, Cheng, and Xie (2004) extended the research of Xie
on the Max-EWMA and the EWMA-SC charts. Costa and Rahim
(2004) considered the joint monitoring of the process mean
and variability using a non-central chi-square (NCS) chart. Based
on the weighted loss function, Wu and Tina (2005) proposed a
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weighted loss function CUSUM (WLC) chart to monitor the
changes in the mean and variance. An overview of single vari-
able charts can be found in Chen and Thaga (2006). They men-
tioned that there were two approaches for using one control
chart for process monitoring. One approach plots two quality
characteristics in the same chart, whereas the other uses one
plotting variable to represent the process location and spread.
Costa and De Magalhaes (2007) proposed an adaptive non-cen-
tral chi-square statistic chart to simultaneously monitor the pro-
cess mean and variance. Wu, Wang, and Wang (2007) presented
a loss-function-based adaptive control chart to monitor process
shifts in the mean and variance simultaneously. Wu and Yu
(2010) proposed a neural network ensemble model for online
monitoring of process mean and variance shifts in correlated
processes. The simulation results indicate that the model moni-
tors any type of changes more efficiently than other traditional
control charts, and can accurately classify the types of shifts
for correlated processes. Khoo, Teh, and Wu (2010) revealed that
the Max-DEWMA chart was more sensitive than the Max-EWMA
chart for detecting small and moderate shifts in the process
mean and/or variance. Teh, Khoo, and Wu (2011) proposed a
SS-DEWMA chart to improve the performance of the SS-EWMA
chart in detecting initial out-of-control signals. Sheu, Huang,
and Hsu (2012) extended the single Max-EWMA chart to a single
GWMA chart, called the Max-GWMA chart. Their analytical re-
sults indicated that the Max-GWMA chart was more sensitive
than the Max-EWMA chart. Teh and khoo (2012) compared the
effects of non-normality on the performances of Max-DEWMA
and SS-DEWMA charts. They suggested that the Max-DEWMA
chart be employed for the joint monitoring of the mean and/or
variance, when the underlying distribution is non-normal. Ou,
Wu, and Lee (2013) proposed an adaptive absolute cumulative
sum chart (adaptive ACUSUM chart) for statistical process con-
trol. The new development includes the variable sampling inter-
val (VSI), variable sample size (VSS), and VSS and interval (VSSI)
versions, all of which are highly effective in monitoring the
mean and variance of a variable by inspecting the absolute sam-
ple shift. Sheu, Huang, and Hsu (2013) presented a GWMA chart
that detects both the mean and standard deviation shifts by
inspecting a single MCSGWMA statistic. The comparison of the
average run lengths (ARLs) shows that the MCSGWMA control
chart performs better than the Max-EWMA control chart. Re-
cently, the single SS-GWMA chart was proposed by Huang and
Methods (2012). His simulation results indicated that SS-GWMA
control charts outperformed SS-EWMA charts in terms of the
ARL and standard deviation of run length (SDRL).

To enhance the detection ability of the SS-GWMA control
chart, we employ the DGWMA technique developed by Sheu
and Hsieh (2009) to detect the shifts in the process mean and/
or process variability. This novel control chart is called the sum
of squares DGWMA (SS-DGWMA) chart, and a statistical model
is developed for the SS-DGWMA scheme. Numerical simulations
are performed to calculate the ARLs and SDRLs of the SS-GWMA,
SS-DEWMA, and SS-DGWMA charts. Based on the simulation re-
sults, we show that the optimal SS-DGWMA chart is superior to
the optimal SS-GWMA and SS-DEWMA charts in all studied
scenarios.

The rest of this article is organized as follows: Section 2 pre-
sents a review of the SS-GWMA chart. In Section 3, we introduce
our proposed SS-DGWMA chart. Section 4 shows the implementa-
tions of the SS-DGWMA chart. The results of a simulation study are
presented in Section 5, which compares the performance of the SS-
DGWMA, SS-DEWMA, and SS-GWMA charts in terms of their ini-
tial-state ARL and SDRL. An illustrative example is presented in
Section 6, whereas conclusions are drawn in Section 7. Finally,
the technical details are provided in the Appendix.

2. Brief review of SS-GWMA control chart

The SS-GWMA chart was originally proposed by Huang (2012)
to improve the performance of the SS-EWMA chart in detecting ini-
tial out-of-control signals. In this chart, two GWMA statistics are
combined into a single chart and the process mean and variability
can be simultaneously monitored.

A GWMA is a moving average of past data where each data
point is assigned a weight. The SS-GWMA control chart is briefly
introduced here for completeness.

In a sequence of independent samples, let M represent the num-
ber of samples until the recurrence of event A after a previous
occurrence. For the sequence, we can write

X1
m¼1

PðM¼mÞ¼PðM¼1ÞþPðM¼2Þþ �� �þPðM¼ tÞþPðM> tÞ¼1:

ð1Þ

Here, P(M = 1),P(M = 2), . . . ,P(M = t) are the weights of the samples
going backward from M = 1 (the current sample) to M = t (the
remotest sample). Therefore, P(M > t) is weighted with the target
value of the process.

Let X be a quality characteristic of a process having a normal
distribution with mean l + dr and standard deviation qr, where
l and r are defined as standard values of the process. If d = 0 and
q = 1, the process is in control; otherwise, the process is shifted
and/or changed.

Let Xij, i = 1,2, . . . and j = 1,2, . . . ,ni be measurements of the var-
iable X, arranged in groups of size ni, where i is the index of the
group number. Let �Xi and S2

i denote the sample mean and sample
variance, respectively, of sample i. Then, �Xi; i = 1,2, . . . are indepen-
dent normal random variables with mean l + dr and variance
q2r2/ni; ðni � 1ÞS2

i =q2r2 and i = 1,2, . . . are independent chi-square
random variables with ni � 1 degrees of freedom, and �Xi and S2

i are
independent variables. Two statistics are defined:

Ui ¼
Xi � l
r=

ffiffiffiffi
ni
p ð2Þ

and

Vi ¼ U�1 F
ðni � 1ÞS2

i

r2 ; ni � 1

" #( )
: ð3Þ

Note that in Eq. (3), U�1(�) and F(h,t) denote the inverse standard
normal distribution function and the chi-square distribution func-
tion with t degrees of freedom, respectively (these transformations
and their applications were proposed by Quesenberry (1995)).

Both Ui and Vi are independent standard normal random vari-
ables when the process is in control, and the distributions of both
Ui and Vi are independent of the sample size ni. Two GWMA statis-
tics, one each for the mean and variability, can be defined from Ui

and Vi as follows:

Ai¼ PðM¼1ÞUiþPðM¼2ÞUi�1þ���þPðM¼ iÞU1þPðM> iÞA0

A0¼0

�
ð4Þ

Bi¼ PðM¼1ÞViþPðM¼2ÞVi�1þ���þPðM¼ iÞV1þPðM> iÞB0

B0¼0

�
;

ð5Þ

where i = 1,2, . . .. The practitioner sets the starting value of A0 and
B0, usually to A0 = B0 = 0. It is known that Ai and Bi are independent
because Ui and Vi are independent, and when d = 0, q = 1, and
A0 = B0 = 0, we have both Ai � Nð0;r2

Ai
Þ and Bi � Nð0;r2

Bi
Þ, where

r2
Ai
¼ r2

Bi
¼
Pi

j¼1½PðM ¼ jÞ�2.
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