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a b s t r a c t

One-class classification (OCC) has received a lot of attention because of its usefulness in the absence of
statistically-representative non-target data. In this situation, the objective of OCC is to find the optimal
description of the target data in order to better identify outlier or non-target data. An example of OCC,
support vector data description (SVDD) is widely used for its flexible description boundaries without
the need to make assumptions regarding data distribution. By mapping the target dataset into high-
dimensional space, SVDD finds the spherical description boundary for the target data. In this process,
SVDD considers only the kernel-based distance between each data point and the spherical description,
not the density distribution of the data. Therefore, it may happen that data points in high-density regions
are not included in the description, decreasing classification performance. To solve this problem, we pro-
pose a new SVDD introducing the notion of density weight, which is the relative density of each data
point based on the density distribution of the target data using the k-nearest neighbor (k-NN) approach.
Incorporating the new weight into the search for an optimal description using SVDD, this new method
prioritizes data points in high-density regions, and eventually the optimal description shifts to these
regions. We demonstrate the improved performance of the new SVDD by using various datasets from
the UCI repository.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

One-class classification (OCC) is a response to the data classifi-
cation problem in which there is an absence of suitable negative
cases that can be used for training. The subject of a great deal of
past research, OCC thus aims to find the best description of a data
set using only objects from one class, known as the target data. If
the target data is described accurately, it can be used to classify
other classes when there are insufficient non-target data (Tax &
Duin, 2002); thus, OCC has attracted attention for use in excep-
tional situations where it is difficult to gather datasets for other
classes or where no other classes exist (Khan & Madden, 2010;
Mazhelis, 2006).

Support vector data description (SVDD) is a widely used exam-
ple of OCC. The objective of SVDD is to find a set of support vectors
(SVs) describing the spherical boundary of the target data by map-
ping it into high-dimensional feature space. Since the process oc-
curs in feature space, SVDD has a flexible description boundary.
SVDD has been developed from support vector machines as a
way to compensate for weaknesses in previous OCC research. Be-
fore the use of support vectors, many classification methods were
based on the estimation of the probability distribution of the target
data set, and this produced severe limitations for data sets that did

not follow a specific distribution (Tax & Duin, 2002). In contrast,
SVDD is easily applicable to data generated in the real world with
no assumptions regarding the data distribution (Grinblat, Uzal, &
Granitto, 2013; Sjöstrand, Hansen, Larsson, & Larsen, 2007).

In addition to not requiring assumptions of data distribution,
SVDD is also used in various fields for its flexible description
boundaries. In terms of feature extraction methodology, it can be
used to produce a representative set of target data for image retrie-
val (Lai, Tax, Duin, Pękalska, & Paclík, 2004), facial images (Lee,
Park, & Lee, 2006), and pattern recognition (Dong, Zhaohui, &
Wanfeng, 2001; Zhao, Wang, & Xiao, 2013). SVDD has also been
used in outlier detection for image sensory devices (Bovolo,
Camps-Valls, & Bruzzone, 2010; Guo, Chen, & Tsai, 2009), intrusion
detection (Kang, Jeong, & Kong, 2012), and mura inspection of thin-
film transistor liquid–crystal displays (TFT-LCDs) (Liu, Lin, Hsueh,
& Lee, 2009; Liu, Liu, & Chen, 2011). With outliers recognized as
fault in the process, it is possible to identify faults in the dataset
using SVDD (Liu, Liu, & Chen, 2010; Luo, Cui, & Wang, 2011; Zhang,
Liu, Xie, & Li, 2009).

However, even though conventional SVDD has advantages in
data domain description, a major limitation exists. To decide the
optimal description of target data, SVDD takes into account only
the kernel-based distance between the spherical boundary and
the data points, not the distribution of the data. When SVDD sets
the description boundary without considering the density distribu-
tion of the data, it is possible that the boundary will pass through
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the highest density area. Hence, the algorithm could misjudge out-
liers and this weakness could decrease classification performance
(Lee, Kim, Lee, & Lee, 2005).

A great deal of research has been conducted seeking to over-
come this weakness by applying additional characteristics of the
target dataset. Lee, Kim, Lee, and Lee (2007) offered density-in-
duced SVDD by introducing relative density based on the nearest
neighborhood and Parzon-window approaches to reflect the den-
sity distribution of a dataset (Lee et al., 2007). Based on the degree
of density for each data point, they also proposed a new geometric
distance strategy, the density-induced distance measure, for posi-
tive and negative data in the search for an optimal SVDD.

Liu, Xiao, Cao, Hao, and Deng (2013) also proposed a new SVDD
by introducing a confidence score for target data, a score that indi-
cates the likelihood of an example belonging to the normal class by
using kernel-based distance. The data is mapped into high-dimen-
sional feature space and the score decided based on the distance
from the centroid of the dataset to each data point in feature space.
By introducing this score when searching for the optimal spherical
description, the description first includes data points with high
confidence scores, which are those near the centroid of the dataset
in feature space. The effect of confidence score is therefore to apply
the characteristics of data distribution in feature space to find the
optimal SVDD. However, when mapping datasets into high-dimen-
sional space, the SVDD algorithm uses the kernel function so that
the centroid of the dataset in feature space may not correspond
with the centroid in real space. Therefore, a characterized descrip-
tion of the dataset in high-dimensional feature space may not pro-
duce an optimal SVDD.

To solve this problem, we introduce a density weight into the
search for an optimal SVDD. Density weight reflects the density
distribution of a dataset in real space using the k-nearest neighbor
(k-NN) approach and each data point is assigned this weight
according to the data density distribution. By applying the density
weight of each data point into the search process, the description
prioritizes data points in high-density regions. Eventually the opti-
mal description shifts toward these dense regions. As a result, the
introduction of density weight compensates for the weakness in
the SVDD by reducing the risk of not including data points in
high-density regions. We therefore propose a new SVDD named
density weighted SVDD (DW-SVDD) and we examine the perfor-
mance of this algorithm using UCI repository datasets.

The structure of the paper is organized as follows. In Section 2,
we give an overview of conventional SVDD. Section 3 introduces
the density weight method, and the steps for applying this to SVDD
will be explained. In Section 4, experimental results for DW-SVDD
will be presented, including a performance comparison with other
algorithms using UCI repository datasets. Finally, Section 5 con-
tains our concluding remarks and suggestions about future re-
search opportunities.

2. Support vector data description

The objective of SVDD is to find the best data description of tar-
get data in OCC. Assume a data set {xi, i = 1, ..., l} where l is the
number of target data. The objective function of SVDD is as follows:

min R2 þ C
Xl

i¼1

ni

s:t: kxi � ak2
6 R2 þ ni; ni P 0 8i

ð1Þ

The basic idea of SVDD is to determine the data description as
the smallest sphere containing all possible target data in feature
space (Tax & Duin, 2004). Usually, some data points are allowed
outside the sphere and are treated as outliers. As shown in Fig. 1,

the variable ni is used to incorporate the effect of data not included
in the spherical description. R is the radius of the sphere used in
SVDD.

The variable C represents the trade-off between sphere volume
and the number of target data outside the sphere, allowing the rel-
ative importance of each term to be adjusted. Adding the slack var-
iable ni into the constraints allows for soft boundaries (Kang &
Choi, 2008; Lee et al., 2006).

To solve the optimization problem with these constraints, we
construct a Lagrangian function as follows:

LðR; a;ai; ci; niÞ ¼ R2 þ C
Xl

i¼1

ni �
Xl

i¼1

ai R2 þ ni � kxi � ak2
n o

�
Xl

i¼1

cini ð2Þ

where the Lagrange multipliers are ai P 0 and ci P 0. To find the
stationary point of the Lagrange function, set partial derivatives to
0.

@L
@R
¼ 0 : 2R� 2R

Xl

i¼1

ai ¼ 0 )

Xl

i¼1

ai ¼ 1 ð3Þ

@L
@a
¼ 0 : 2a� 2

Xl

i¼1

aixi ¼ 0 )a ¼
Xl

i¼1

aixi ð4Þ

@L
@ni
¼ 0 )C � ai � ci ¼ 0 8i ð5Þ

Adjusting to the new constraints (3)–(5), the rearranged function is
as follows:

max
Xl

i¼1

aihxi; xii �
Xl

i¼1

Xl

j¼1

aiajhxi; xji

s:t: 0 6 ai 6 C i ¼ 1;2; . . . ; l

Xl

i¼1

ai ¼ 1

ð6Þ

As a result, we can calculate each value of ai and the centroid of
the optimal sphere is determined by the linear combination of any
non-zero ai known as support vectors (SVs) and according to these
SVs, the best description is determined.

Because the problem is related to the inner products between
vectors, it could be mitigated by replacing the inner products with
a kernel function K(xi, xi) that satisfies Mercer’s theorem (Tax &
Duin, 2004). Replacing inner products with the kernel function,
the search for the optimal data description is equivalent to:

max
Xl

i¼1

aiKðxi; xiÞ �
Xl

i¼1

Xl

j¼1

aiajKðxi; xjÞ

s:t: 0 6 ai 6 C i ¼ 1;2; . . . ; l

Xl

i¼1

ai ¼ 1

ð7Þ

Despite SVDD providing a flexible description boundary suit-
able for the dataset, there are some drawbacks inherent to the
search for the description boundaries in feature space. In the pro-
cess of extracting the best description of the dataset, SVDD decides
whether each data point is located inside or outside the sphere in
feature space. To make this decision, SVDD primarily considers the
kernel-based distance, which represents how far the data point is
from the sphere in high-dimensional space, expressed as the slack
variable ni. However, only using kernel-based distance is insuffi-
cient in describing every relevant characteristic of the dataset.

3344 M. Cha et al. / Expert Systems with Applications 41 (2014) 3343–3350



Download English Version:

https://daneshyari.com/en/article/10322114

Download Persian Version:

https://daneshyari.com/article/10322114

Daneshyari.com

https://daneshyari.com/en/article/10322114
https://daneshyari.com/article/10322114
https://daneshyari.com

