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ARTICLE INFO ABSTRACT

This paper presents a Dynamic Clustering Algorithm for histogram data with an automatic weighting step
of the variables by using adaptive distances. The Dynamic Clustering Algorithm is a k-means-like algo-
rithm for clustering a set of objects into a predefined number of classes. Histogram data are realizations
of particular set-valued descriptors defined in the context of Symbolic Data Analysis. We propose to use
the ¢, Wasserstein distance for clustering histogram data and two novel adaptive distance based cluster-
ing schemes. The ¢, Wasserstein distance allows to express the variability of a set of histograms in two
components: the first related to the variability of their averages and the second to the variability of the
histograms related to different size and shape. The weighting step aims to take into account global and
local adaptive distances as well as two components of the variability of a set of histograms. To evaluate
the clustering results, we extend some classic partition quality indexes when the proposed adaptive dis-
tances are used in the clustering criterion function. Examples on synthetic and real-world datasets cor-
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roborate the proposed clustering procedure.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In many real experiences, data are grouped and summarized by
histograms. For example, in the framework of image analysis, the
characteristics of the images can be represented as histograms
(even if they have to be considered as bar diagrams). Histogram
descriptions are used for privacy preserving matters (for example,
the cash flows of a bank account), as well as for the dissemination
of official statistics, or when it is more relevant the aggregated
information than the single observations. Histogram data formal-
ization (in terms of descriptions of statistical units) were intro-
duced in the context of Symbolic Data Analysis (SDA) by Bock and
Diday (2000) as particular set-valued descriptions. In this frame-
work, several techniques have been proposed for the statistics
treatment of such new entities.

A classic tool for the exploration of a set of data is the cluster
analysis, which aims to collect a set of objects in a number of
homogeneous clusters according to the values they assume with
respect to a set of observed variables. Clustering techniques may
be divided into hierarchical and partitioning methods (Jain, 2010;
Xu & Wunusch, 2005). Among the partitioning methods, Dynamic
Clustering (DC) (Diday & Simon, 1976), a generalization of the
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k-means algorithm, showed some interesting properties in treating
set-valued descriptions. The DC method (Diday & Simon, 1976) is a
general partitioning algorithm of a set of objects in K clusters. It is a
two step algorithm that minimizes a within homogeneity criterion
and looks for the best representation of each cluster according to
the homogeneity criterion. In DC, the choice of a suitable dissimi-
larity plays a central role for the definition of the allocation and of
the representation phases. The k-means algorithm is a particular
case of DC where the criterion function is expressed as the sum
of the squared Euclidean distances of the objects with respect to
the mean of the belonging cluster. According to the nature of data
and the chosen dissimilarity function, DC is a more general schema
of partition around a set of prototypes. In the case of the k-means,
prototypes are the means of each cluster, while the DC can admit
more general prototypes, like a sets of elements of the cluster,
regression lines, factorial axes and so on.

A main issues in clustering analysis is to take into account the
different contribution of each variable in the clustering process
according to their variability. Conventional clustering algorithms
do not take into account the relevance of the variables, i.e., these
algorithms consider that all variables are equally important to
the clustering process. However, in most applications some vari-
ables may be irrelevant and, among the relevant ones, some may
be more or less relevant than others. Furthermore, the relevance
of each variable to each cluster may be different, i.e., each cluster
may have a different set of relevant variables. To face this problem,
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it is usual to standardize data in order to allow to each variable
playing a comparable role in the analysis. However such strategy
cannot take into account the importance of each variable in the
clustering process. In order to tackle this issue Diday and Govaert
(1997) proposed to integrate adaptive distances. The use of adap-
tive distances in the clustering algorithm is done introducing a
weighting step in the optimization process. In this step a set of
weights are obtained minimizing the total sum of squares crite-
rion. Such weights are associated with each variable (for all the
clusters or for each cluster) and represents a measure of the impor-
tance of a variable in the clustering process. More recent ap-
proaches to compute the relevance weight of a variable in the
clustering process can be found in Ref. Frigui and Nasraoui
(2004), Chan, Ching, Ng, and Huang (2004), Friedman and Meul-
man (2004), Huang, Ng, Rong, and Li (2005), Jing, Ng, and Huang
(2007), Tsai and Chiu (2008), Deng, Choi, Chung, and Wang
(2010), Ahmad and Dey (2011) and Chen, Ye, Xu, and Huang
(2012). In the framework of SDA, De Carvalho and Lechevallier
(2009a, 2009b), De Souza and De Carvalho (2007) and De Carvalho
and De Souza (2010) proposed several adaptive distances (based
on Hausdorff, City-Block and Euclidean distances) in Dynamic
Clustering Algorithm of set-valued data.

Clustering methods are generally based on dissimilarity/simi-
larity measures for comparing data. In the special field of image
analysis Rubner, Tomasi, and Guibas (2000) introduced the Earth
Mover’s distance (EMD). It is worth to note that EMD between his-
tograms of pixel intensities is equivalent to the Mallow’s, or /4,
Wasserstein distance (Riishendorff, 2001; Villani, 2003) for proba-
bility distributions (Levina & Bickel, 2001; Mallows, 1972) when
the histogram of pixel counts are normalized to one. However,
the comparison of histogram data can be seen as a particular case
of comparison of probability distribution functions of random vari-
ables. The first formulations of this distance for statistical purposes
goes to the Gini’s studies in 1918. To this aim, several distances for
histograms have been presented in the literature (in the SDA
framework a survey is available in Verde & Irpino (2008b)).

Several proposals have been presented in the SDA literature for
clustering histogram data (see Irpino & Verde (2006), Verde & Irpi-
no (2006, 2008a, 2008b)). More recently, Terada and Yadohisa
(2010) proposed a k-means clustering method using empirical
joint distributions. Vrac, Billard, Diday, and Chedin (2012) give a
Dynamic Clustering Algorithm based on the use of copula analysis
aiming to take into account the relationship between the histo-
gram variables. Calo, Montanari, and Viroli (2014) presented a
hierarchical mixture model that allows dimension reduction by
assuming a generative factorial model for the observed histogram
variables. Despite these recent contributions to clustering analysis
of histogram data, none of them is able to compute automatically a
relevance weight of each histogram variable during the clustering
process.

The present paper present a Dynamic Clustering Algorithm
based on the use of the ¢, Wasserstein distances to compute the
dissimilarity between histogram data. Thanks to two novel adap-
tive distance based clustering schemes, the proposed method is
able to compute automatically the relevance weight of each histo-
gram variable during the partitioning of the data set. Ref. De Carv-
alho and De Souza (2010) gives also a clustering algorithm with
automatic weighting of the histogram variables. However, Ref. De
Carvalho and De Souza (2010) uses an Euclidean distance between
two sets of weights related to a particular pre-processing of the
set-valued data. In the present paper, the ¢/, Wasserstein distance
does not require pre-processing of the input histograms and it is
not affected by different schemes of binning for the histograms.
Further, using a particular decomposition of the ¢, Wasserstein dis-
tance (Irpino & Romano, 2007) and considering the variability
measure introduced in Verde and Irpino (2008b), it is possible to

express the variability of a set of histograms in two parts: the first
related to the variability of averages of the histograms and the sec-
ond related to the variability due to the different sizes or shapes of
the histograms. Thus, it is possible to consider the ¢, Wasserstein
distance as measure of diversity of two distributions according to
two (additive) sources (or components) of variability.

In order to take advantage from this decomposition, we propose
a global and a local approach for the definition of adaptive dis-
tances that take into account the two components of the variability
of a set of histograms. In the global approach, we propose to asso-
ciate two sets of weights to each variable and to each component.
The two sets are globally estimated for all the clusters at once. In
the local approach we consider also a different set of weights for
each cluster.

Moreover, we prove the decomposition of the total inertia of a
set of histogram data computed with the adaptive (squared)
Wasserstein distances in within (intra-cluster) and between
(inter-cluster) inertia. According to this result, we provide cluster-
ing interpretative tools based on the extension of the classic
quality partition indexes (Celeux, Diday, Govaert, Lechevallier, &
Ralambondrainy, 1989).

This paper is organized as follows: in Section 2, we introduce
the definitions of histogram data and the Wasserstein distance
between histograms. In Section 3, starting from the Dynamic Clus-
tering Algorithm with non-adaptive distances, we propose two
schemes where the adequacy criterion is based on adaptive
squared Wasserstein distances. The first, we denote as Globally
Component-wise Adaptive Wassertein Distance (GC-AWD), while
the second, as Cluster Dependent Component-wise Adaptive Wasser-
tein Distance (CDC-AWD). In Section 3.2, we introduce some tools
for the interpretation of the clustering results. In Section 4, two
applications are shown: one using synthetic data in order to illus-
trate the usefulness of the proposed methods based on the variabil-
ity structure of the data; the other one, using a real dataset in order
to demonstrate the application in a real situation and to show how
to interpret the results of a classic clustering task on histogram
data. Section 5 ends the paper with some conclusions and perspec-
tives about the proposed clustering methods.

2. Histogram data and Wasserstein distance

Histogram is a suitable (in terms of computational resources)
way for the representation of aggregate data or empirical distribu-
tions. SDA formalized histogram data as realizations of a histogram
variable (a special case of modal-valued variable). In this case, the
variable Y is a histogram-valued variable if to each observation i
corresponds a probability or a frequency distribution described
by a histogram (Bock & Diday, 2000).

Formally, let y; a realization of Y such that S(i)=
[min(y); Max(y)] C R is the support, that is partitioned into a set of
contiguous intervals (bins) {l;, ... ,In;,...,In} (Where Iy; = [ay; by;)
with min(y) = ay; and Max(y) = by,;) and each Iy; is associated with
a (non negative) weight 7; that represents an empirical (or theoret-
ical) relative frequency. In this paper, we denote with f;(y) the
(empirical) density function associated with the description y; and
with F;(y) its cumulative distribution function. It is possible to define
the description of the ith histogram for the variable Y as:

Vi = [(his i), - -, Qi i), - -+, (T, i) ]
such that VI,; € S(i), m, = / fiy)dy > 0 and / fiy)dy =1.
Jly; Js(i)
(M)

In the following, we use y; to denote the histogram associated with
the ith unit when a single histogram variable is observed. If we
obverse p variables, we denote with y; (where i=1,...,n and
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