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a b s t r a c t

Multi-label support vector machine with a zero label (Rank-SVMz) is an effective SVM-type technique for
multi-label classification, which is formulated as a quadratic programming (QP) problem with several
disjoint equality constraints and lots of box ones, and then is solved by Frank–Wolfe method (FWM)
embedded one-versus-rest (OVR) decomposition trick. However, it is still highly desirable to speed up
the training and testing procedures of Rank-SVMz for many real world applications. Due to the special
disjoint equality constraints, all variables to be solved in Rank-SVMz are naturally divided into several
blocks via OVR technique. Therefore we propose a random block coordinate descent method (RBCDM)
for Rank-SVMz in this paper. At each iteration, an entire QP problem is divided into a series of small-scale
QP sub-problems, and then each QP sub-problem with a single equality constraint and many box ones is
solved by sequential minimization optimization (SMO) used in binary SVM. The theoretical analysis
shows that RBCDM has a much lower time complexity than FWM for Rank-SVMz. Our experimental
results on six benchmark data sets demonstrate that, on the average, RBCDM runs 11 times faster, pro-
duces 12% fewer support vectors, and achieves a better classification performance than FWM for Rank-
SVMz. Therefore Rank-SVMz with RBCDM is a powerful candidate for multi-label classification.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Traditional supervised classification deals with problems in
which one instance is only associated with a single class label
and thus the classes are mutually exclusive (Duda, Hart, & Stork,
2001). However, in many real world applications, one instance pos-
sibly belongs to several labels simultaneously, e.g., a sunrise image
could be annotated by sun, sky and sea at the same time (Boutell,
Luo, Shen, & Brown, 2004). Such a classification issue is referred to
as multi-label classification and has been attracted a lot of atten-
tion in the recent decade. So far, a variety of multi-label methods
have been proposed and validated (Madjarov, Kocev, Gjorgjevikj,
& Dzeroski, 2012; Tsoumakas, Katakis, & Vlahavas, 2010; Zhang
& Zhou, 2013), most of which can be categorized into three groups:
problem transformation, algorithm adaptation and ensemble
methods.

Problem transformation methods convert a multi-label problem
into either one or more single-label (binary or multi-class) sub-
problems, construct a sub-classifier for each sub-problem using
an existing classification technique, and then aggregate all sub-
classifiers into an entire multi-label classifier. It is convenient
and fast to implement a problem transformation method due to
lots of existing techniques and their free software, e.g., support
vector machine (SVM), k-nearest neighbor method (kNN), naive

Bayes (NB), and so on. There are mainly two widely-used transfor-
mation tricks: one-versus-rest (OVR) or binary relevance (BR), and
label powerset (LP) (Tsoumakas et al., 2010; Zhang & Zhou, 2013).
The main criticism is that label correlations are not depicted
explicitly in OVR methods, and lots of new classes with a few in-
stances are created in LP methods. Through incorporating label
correlations into OVR methods specially, the classification
performance can be enhanced further (Alvares-Cherman, Metz, &
Monard, 2012; Montanes et al., 2013).

Algorithm adaptation methods extend their original multi-class
classification algorithms to handle an entire multi-label training
data set directly. It is worth noting that this kind of methods could
be further divided into two sub-groups. One considers all class la-
bels and all instances simultaneously in order to explicitly charac-
terize as many label correlations as possible, and usually induces
some complicated optimization problems, such as, large-scale qua-
dratic programming (QP) problems in multi-label SVM-type meth-
ods (e.g., Rank-SVM (Elisseeff & Weston, 2001), Rank-SVMz (Xu,
2012), and Rank-CVM (Xu, 2013)), and large-scale unconstrained
problem in multi-label BP neural networks (BP-MLL) (Zhang &
Zhou, 2006). The other still deals with each class independently
after using some problem transformation tricks (e.g., OVR), such
as, four multi-label kNN-type methods (ML-kNN (Zhang & Zhou,
2007), IBLR-ML (Cheng & Hullermeier, 2009), FSKNN (Jiang, Tsai,
& Lee, 2012), and MlCBR (Nicolas, Sancho-Asensio, Golobardes,
Fornells, & Orriols-Puig, 2013)), multi-label classification based
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on neighborhood rough set using local correlation (MLRS-LC) (Yu,
Pedrycz, & Miao, 2013), multi-label RBF neural networks (ML-
RBF) (Zhang, 2009), and extended OVR support vector machine
(OVR-ESVM) (Xu, 2011). The latter sub-group of methods has much
lower computational complexity than the former one, which in-
spires us to introduce problem transformation tricks into algo-
rithm adaptation methods for reducing as many computational
costs as possible.

Ensemble methods (Madjarov et al., 2012) either generalize an
existing multi-class ensemble classifier, or realizes a new ensemble
of the aforementioned two kinds of multi-label techniques. The fa-
mous AdaBoost is extended to construct two slightly different mul-
ti-label versions: AdaBoost.MH and AdaBoost.MR (Schapire &
Singer, 2000), where ‘‘H’’ and ‘‘R’’ indicate that Hamming and rank-
ing losses are minimized respectively. Random k-labelsets (RAkEL)
method divides an entire label set into several subsets of the size k,
trains LP classifiers and then constructs an ensemble multi-label
algorithm (Tsoumakas, Vlahavas, & Katakis, 2011). Ensemble of
classifier chains (ECC) (Read, Pfahringer, Holmes, & Frank, 2011)
is an ensemble technique which uses classifier chains (CC) as a
base classifier, where CC implies to build an OVR classifier in a cas-
cade way rather than a parallel one. In Madjarov et al. (2012), ran-
dom forest of predictive clustering trees (RF-PCT) is strongly
recommended due to its good performance from an extensive
experimental comparison, including ECC and RAkEL. Usually, these
ensemble methods spend more training and testing time to
achieve their classification performance improvement.

Now it is universally recognized that characterizing as many
label correlations as possible could effectively improve the multi-
label classification performance (Alvares-Cherman et al., 2012;
Dembczynski, Waegeman, Cheng, & Hullermeier, 2012; Montanes
et al., 2013; Yu et al., 2013). As mentioned above, considering all
training instances and all labels simultaneously is an explicit and
effective way to depict label correlations. One representative algo-
rithm is multi-label support vector machine with a zero label
(Rank-SVMz, originally SVM-ML) (Xu, 2012). The original form of
Rank-SVMz depicts the label correlations using all possible pair-
wise constraints between the relevant (and irrelevant) labels and
a zero label. For a q-class multi-label classification data set of the
size l, the dual version of Rank-SVMz is formulated as a QP problem
with q disjoint equality constraints and ql box constraints, whose
number of total variables to be solved is ql.

Frank–Wolfe method (FWM) is a simple first order feasible
direction optimization technique (Frank & Wolfe, 1956), which
converts a original problem with linear constraints and box con-
straints into a series of linear programming (LP) problems. When
FWM is applied to Rank-SVMz, at each iteration or epoch, the en-
tire LP problem can be divided into q LP sub-problems of the size
l via OVR decomposition trick according to the disjoint equality
constraints of different classes. The time complexity of each epoch
is Oðq2l2Þ. On the other hand, FWM has a sub-linear convergence
rate (Frank & Wolfe, 1956; Guelat & Marcotte, 1986; Xu, 2013).
To achieve an � accuracy solution, it is needed to execute
Oð2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2þ 3q

p
Kk kFD

2=�Þ epochs, where Kk kF represnts the Frobe-
nius norm of kernel matrix and D indicates the diameter of the
polyhedron satisfying all constraints. It has been experimentally
demonstrated that Rank-SVMz based on FWM can produces a
dense solution vector, which costs more computational time in
the testing procedure. Therefore it is still imperative to speed up
the training and testing procedures of Rank-SVMz further for many
real world applications.

Block coordinate descent method (BCDM) is also one of the old-
est first-order optimization techniques, which has been paid more
attention to recently due to its simplicity and efficiency (Necoara &
Patrascu, 2013; Wen, Goldfarb, & Scheinberg, 2012). BCDM parti-
tions all variables into some manageable blocks and updates a

single block only at each iteration while the remaining blocks are
fixed. Additionally, there are three possible ways to select a single
block: greedy using gradient information, cyclic and random meth-
ods. As we known, binary SVM is widely optimized by sequential
minimization optimization (SMO) (Chang & Lin, 2011; Fan, Chen,
& Lin, 2005), in which two variables are chosen according to gradi-
ent information at each iteration. Therefore SMO essentially is an
efficient greedy BCDM. In order to avoid calculating or maintaining
a large-scale gradient vector, the random way is widely accepted
now (Necoara & Patrascu, 2013; Wen et al., 2012).

Since Rank-SVMz involves q disjoint equality constraints, all ql
variables are naturally split into q blocks of the size l via OVR
decomposition trick. Therefore we introduce a random block coor-
dinate descent method (RBCDM) for Rank-SVMz in this paper. At
each iteration, we select a block randomly and optimize its corre-
sponding QP sub-problem with a single equality constraint and l
box ones using SMO in binary SVM (Chang & Lin, 2011; Fan et al.,
2005). At each epoch, we update all q blocks, whose time complex-
ity is Oðql2:3Þ, which is slightly higher than that of FWM. Our RBCDM
for Rank-SVMz still has a sub-linear convergence rate in terms of
the work in Necoara and Patrascu (2013). To achieve an � accuracy
solution, the number of epochs is Oð2 Kk kF R2

0=�Þ, where R0 stands for
the size of the level set. Since R0 6 D, RBCDM theoretically needs
much fewer epochs than FWM for Rank-SVMz. Summarily, RBCDM
has a lower overall time complexity than FWM for Rank-SVMz.

The experimental results on six data sets illustrate that on the
average RBCDM runs 11 times faster, has 12% fewer support vec-
tors, and obtains a better performance than FWM for Rank-SVMz,
and Rank-SVMz with RCBDM is a powerful multi-label classifier,
compared with the other state-of-the-art multi-label techniques
including Rank-SVMz with FWM (Xu, 2012), Rank-SVM (Elisseeff
& Weston, 2001), BP-MLL (Zhang & Zhou, 2006), ML-kNN (Zhang
& Zhou, 2007) and RF-PCT (Madjarov et al., 2012).

The rest of this paper is organized as follows. Rank-SVMz and its
FWM are reviewed in Sections 2 and 3. RBCDM for Rank-SVM is
proposed and analyzed in Section 4. Section 5 is devoted to exper-
iments with six benchmark data sets. This paper ends with some
conclusions in Section 6.

2. Multi-label support vector machine with a zero label

In this section, we review multi-label support vector machine
with a zero label: Rank-SVMz, i.e., SVM-ML originally in Xu
(2012). Let a finite set of q class labels be L ¼ f1;2; . . . ; qg and its
all possible subsets be 2L. We denote a training set of the size l
drawn identically and independently from an unknown probability
distribution on Rd � 2L by,

fðx1; L1Þ; . . . ; ðxi; LiÞ; . . . ; ðxl; LlÞg; ð1Þ

where xi 2 Rd and Li 2 2L represent the ith d-dimensional instance
and its relevant label subset. Additionally, the complement of Li,
i.e., Li ¼ L� Li, indicates the irrelevant label subset. For the conve-
nience of formula representation, we also adopt a binary vector
yi ¼ ½yi1; yi2; . . . ; yiq� to label the instance xi, where yik ¼ 1 if the kth
label is in Li, and �1 otherwise.

In the original input space, q + 1 linear discriminant functions
are defined as,

fkðxÞ ¼ wT
k xþ bk; k ¼ 0;1;2; . . . ; q; ð2Þ

where k = 0 represents a zero label, and wk and bk stand for the
weight vector and bias term of the kth function. In Rank-SVMz,
the zero label is used as a natural zero point to separate the relevant
labels from the irrelevant labels. Now it is desirable that any rele-
vant label should be ranked 1 higher than such a zero label, and
any irrelevant label 1 lower than this zero label, at the same time.
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