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a b s t r a c t

In this study, we found that engineering experience can be used to determine the parameters of an opti-
mization algorithm. We came to this conclusion by analyzing the dynamic characteristics of PSO through
a large number of experiments. We constructed a relationship between the dynamic process of particle
swarm optimization and the transition process of a control system. A novel parameter strategy for PSO
was proven in this paper using the overshoot and the peak time of a transition process. This strategy
not only provides a series of flexible parameters for PSO but it also provides a new way to analyze particle
trajectories that incorporates engineering practices. In order to validate the new strategy, we compared it
with published results from three previous reports, which are consistent or approximately consistent
with our new strategy, using a suite of well-known benchmark optimization functions. The experimental
results show that the proposed strategy is effective and easy to implement. Moreover, the new strategy
was applied to equally spaced linear array synthesis examples and compared with other optimization
methods. Experimental results show that it performed well in pattern synthesis.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Particle swarm optimization (PSO), a stochastic optimization
method, is an evolutionary simulation algorithm derived from
the behavior of flocks of birds and schools of fish. Animals, espe-
cially birds and fish, travel in groups without ever colliding; each
member follows the group and adjusts its position and velocity
using information from the group. PSO, modeled after this swarm-
ing behavior, is a powerful tool for optimizing a wide range of
problems. To gain deeper insight into the mechanism of PSO, many
theoretical analyses have been conducted on the algorithm using
deterministic or stochastic methods. Clerc and Kennedy simplified
PSO to a deterministic dynamical system and mathematically ana-
lyzed the stochastic behavior of the PSO algorithm (Clerc &
Kennedy, 2002). Such simplified, deterministic versions of PSO or
similar systems, which employ a single particle, fixed attractors,
or constant coefficients, have been analyzed by many researchers
for stability, convergence, and parameter selection. Accelerating
the convergence speed and avoiding the local optimal solution
are two main goals that drive the study of PSO. There are many fac-
tors that affect the convergence and performance of the PSO algo-
rithm, such as swarm size, velocity clamping, position clamping,
topology of neighborhoods, and synchronous or asynchronous up-
dates. In addition, values of the inertia weight and the acceleration

coefficients (the cognitive part and the social part of the model,
respectively) may significantly affect the efficiency and reliability
of the PSO. Proper selection of these two parameters can improve
the convergence rate of PSO. Furthermore, some theoretical
analyses of particle trajectories have provided insights into how
the particle swarm system works. Trelea analyzed the dynamic
behavior and the convergence of a simplified PSO algorithm using
standard results from the discrete-time dynamical system theory
and provided a parameter set in the algorithm’s convergence
domain (Trelea, 2003). Eberhart and Shi empirically found that
an inertia weight of 0.729 and acceleration coefficients of 1.496
were good parameter choices that led to convergent trajectories
(Eberhart & Shi, 2000). Similarly, Jiang et al. studied the stochastic
convergence property of the standard PSO algorithm and reported
on a sufficient condition that ensured the stochastic convergence
of the particle swarm system (Jiang, Luo, & Yang, 2007b).
Subsequently, according to these analysis results, a set of sug-
gested PSO parameters was provided in another report (Jiang,
Luo, & Yang, 2007a).

Researchers have also attempted various ways to analyze and
improve PSO. Kennedy proposed a PSO where the usual velocity
formula was removed and replaced by samples from a Gaussian
distribution (Kennedy, 2003). Although the method greatly simpli-
fied the particle swarm algorithm, the performance of the Gaussian
version of PSO was worse than the canonical PSO (Kennedy, 2004).
Sun et al. proposed quantum-behaved particle swarm optimization
(QPSO), motivated by concepts in quantum mechanics, to improve
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the global search ability of PSO (Sun et al., 2012; Xi, Sun, & Xu,
2008). They first employed the theory of probabilistic metric
spaces to analyze the convergence of QPSO. Then, Zhou et al. intro-
duced a random position PSO to improve the global search ability
of particle swarm optimization. Similarly Zhou et al. (2011), and
Chen et al. developed a novel hybrid algorithm that combined
PSO with extremal optimization (EO) to avoid premature conver-
gence of PSO (Chen, Li, Zhang, & Lu, 2010). Moreover, similar vari-
ants are continually being devised using the concept of disturbance
(Zhao, 2010), fuzzy logic (Melin et al., 2013), and hybrid methods
that involve various evolutionary algorithms, such as ant colony
optimization (ACN) (Niknam & Amiri, 2010), differential evolution
(DE) (Liu, Cai, & Wang, 2010), artificial neural networks (ANNs)
(Vasumathi & Moorthi, 2012), and chaos optimization algorithms
(COA) (Jiang, Kwong, Chen, & Ysim, 2012).

Most of the above algorithms improve PSO performance in
some ways, but they also increase the algorithmic complexity.
Pedersen et al. have demonstrated that satisfactory performance
can be achieved with basic PSO when its parameters are tuned
properly (Pedersen & Chipperfield, 2010). Martínez et al. proposed
some promising parameter sets, which resulted in a good parame-
ter region of the inertia value and acceleration coefficients
(Martínez & Gonzalo, 2008). In order to capture the stochastic
behavior of the entire swarm, Chen and Jiang analyzed the particle
interactions and proposed a statistical interpretation of PSO (Chen
& Jiang, 2010). In a word, the above reports provide insights, based
on mathematical analyses, into how the particle swarm system
works. Although PSO is now widely applied in many research
fields, the theoretical analysis of PSO is still quite limited. Further-
more, oscillation properties also have an important influence on
the optimization process, and, so far, there have been few theoret-
ical analyses on optimization process based on control theory. The
‘‘No Free Lunch’’ theorem (Wolpert & Macready, 1997) and ‘‘Opti-
mal Contraction Theorem’’ (Chen, Xin, Peng, Dou, & Zhang, 2009)
indicate that no optimizers can be optimal for arbitrary problems,
and a balance between exploitation and exploration in PSO is
desirable for any problem. To enhance the searching ability of
PSO and accelerate its convergence, we performed a detailed
theoretical and empirical analysis, and we propose a parameter
selection scheme in this paper.

The remainder of this paper is organized as follows: The new
parameter selection strategy for PSO, which was developed accord-
ing to our analysis of particle positions, is provided in Section 2. A
comparative analysis of the new parameter selection strategy,
along with the parameter selection rule raised in the literature
(Jiang et al., 2007a) is presented in Section 3. Experiments on
numerical optimization used to illustrate the efficiency of the pro-
posed parameter selection strategy are given in Section 4. Section 5
gives the application of the new strategy to antenna array pattern
synthesis. Finally, a conclusion and future research are given in
Section 6.

2. Characteristic analysis of standard particle swarm
optimization and introduction to the new parameter selection
strategy

Standard particle swarm optimization (SPSO) maintains a
swarm of particles representing candidate solutions for a given
optimization problem. The movement dynamics of each particle
in the search space is governed by its current position and velocity
which can be regarded as the potential solution in the D-dimension
problem space, whereby the current velocity is determined by (1)
its previous velocity, (2) its distance to the position where the
particle achieved its best fitness (personal best, p), and (3) its dis-
tance from the particle that achieved the best fitness among all the

particles (global best, g). The position of each particle is a potential
solution, and each particle memorizes the best position it achieves
during the entire optimization process (p). The swarm as a whole
memorizes the best position achieved by any of its particles (g).
The position and the velocity relationship after the kth iteration
between any two individuals is obtained by the following updating
formula:

v½kþ 1� ¼ x � v ½k� þ cp � rp½k� � ðp½k� � x½k�Þ þ cg � rg ½k� � ðg½k� � x½k�Þ
ð1Þ

x½kþ 1� ¼ x½k� þ v ½kþ 1� ð2Þ

where x is a parameter called the inertia weight, and the accelera-
tion factors cp and cg are positive constants that control the relative
impact of the personal (local) and common (global) knowledge on
the movement of each particle. The terms rp and rg are independent,
uniformly distributed random variables in the range of (0, 1), and
p[k] is the best previous position of x[k] while g[k] is the best overall
position achieved by a particle within the entire population. In this
version, v[k] is clamped to a maximum magnitude Vmax.

In the PSO algorithm, proper control of global exploration and
local exploitation is a crucial issue. Shi and Eberhart introduced
the concept of inertia weight to the original version of PSO to bal-
ance the local and global searches during the evolution process (Shi
& Eberhart, 1998). In general, a large inertia weight imposed at the
early search stages allows the search space to be thoroughly ex-
plored. By gradually decreasing the inertia weight, more refined
solutions are achieved in the final search stage. The major goal of
this modification was to avoid premature convergence in the early
search stages and to improve convergence to the global optimal
solution during the latter search stages. The concept of linearly
decreasing inertia weight applied to particle swarm optimization
(LPSO) was introduced in (Shi & Eberhart, 1999) and is given by:

x ¼ xmax �
xmax �xmin

itermax
iter; ð3Þ

where xmax and xmin are the initial and final values of the inertia
weight, respectively, iter is the current iteration number, and itermax

is the maximum number of allowable iterations. Usually, parame-
ters xmax and xmin are set to 0.9 and 0.4, respectively. Therefore,
the particles use a larger inertia weight during the initial explora-
tion and use lower inertia weight values as the search progresses
to later iterations.

Analyzing the behavior of particles by studying particle trajec-
tories and identifying factors that influence the dynamic behavior
characteristics of particles is necessary.

By substituting Eq. (1) into Eq. (2), we obtain the following non-
homogeneous recurrence relation:

x½kþ 1� þ ðcp � rp½k� þ cg � rg ½k� � 1�xÞ � x½k� þx � x½k� 1�
¼ cp � rp½k� � p½k� þ cg � rg ½k� � g½k� ð4Þ

Applying the expectation operator to both sides of Eq. (4), we
obtain Eq. (5):

Ex½kþ 2� þ cp þ cg

2
� 1�x

� �
� Ex½kþ 1� þx � Ex½k�

¼ cp � p½k� þ cg � g½k�
2

ð5Þ

The convergence analysis regarding the expectation of a parti-
cle’s position was proven by Jiang et al. (2007b) in detail. They
introduced the following theorem:

Given x, cp, cg P 0, if and only if 0 6x < 1 and 0 < cp +
cg < 4(1 + x), iterative process {EX[k]}is guaranteed to converge to
(cp.p + cg.g)/(cp + cg).
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