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a b s t r a c t

The learning problem of continuous hidden Markov models (CHMMs) is the most critical and challenging

one for the application of CHMMs. This paper aims to attack the learning problem of CHMMs by using the

diversified gradient descent (DGD) algorithm. The novel learning formula of CHMM parameters, requiring

no special form of the objective function and yielding various parameter estimates with different degree of

diversity, is derived through dynamically adjusting the iterative procedure according to the gradient change

of each parameter. It is the first work for standard CHMM attempting to obtain more local maxima so that

the global maximum of the likelihood function of CHMM can be better approximated or even discovered.

Hence this paper takes an important step forward in solving the learning problem of CHMM. Furthermore, a

likelihood-based model averaging (LBMA) estimator is developed to achieve robust parameter estimation of

CHMM based upon the diversiform models attained by the DGD algorithm. The proposed methods are tested

on simulation and real-life bearing fault diagnosis problem. The results show that proposed methods perform

better in parameter estimation and bearing fault diagnosis compared to the conventional methods.

© 2015 Published by Elsevier Ltd.

1. Introduction1

In recent years, we have witnessed an increasing interest in2

continuous hidden Markov models (CHMMs) since they own the3

powerful capability to model continuous time-varying signals ap-4

pearing in many real-life applications, such as speech recognition5

(Chatzis, 2010), market analysis (Dias & Ramos, 2014; Elliott, Siu,6

& Fung, 2014), computer science (Tosun, 2014), target classification7

(Robinson, Azimi-Sadjadi, & Salazar, 2005), as well as fault detection8

and diagnosis (Georgoulas et al., 2013; Geramifard, Xu, Zhou, & Li,9

2012; Yuwono, Qin, Zhou, Guo, Celler, & Su, 2015; Zhou, Chen, Dong,10

Wang, & Yuan, 2015). In the CHMM applications, the learning (or11

training) problem which still remains open is the most difficult and12

important issue. The Baum–Welch (BW) algorithm, also known as a13

special case of the expectation maximization algorithm, is a conven-14

tional efficient training algorithm. It adjusts the model parameters15

according to the Maximum Likelihood (ML) criterion, leading to one16

local optimum in the parameter space (Rabiner, 1989). Nevertheless,17

its application is confined to the particular form of the objective func-18

tion, i.e., the likelihood function (Baum & Egon, 1967). In fact, there19

are a lot of cases where the requirements of the BW algorithm are20
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evidently not satisfied, such as maximum mutual information train- 21

ing, minimum discrimination information training, and other dis- 22

criminative training algorithms that have become an active research 23

area recently in speech recognition (Biem, 2006; Huo & Chan, 1993; 24

Liu, Liu, Jiang, Song, & Wang, 2008). 25

The gradient techniques, which have been shown to obtain solu- 26

tions comparable to that of the BW algorithm, can also solve for the 27

optimization of the objective function by viewing the learning prob- 28

lem as a classic optimization problem. Unlike the BW algorithm, the 29

gradient techniques can be applied to different objective functions. 30

For example, in Bahl, Brown, de Souza, and Mercer (1986), the gra- 31

dient descent (GD) method was first used to optimize the maximum 32

mutual information objective function; in (Robinson et al., 2005), a 33

batch gradient descent based method was introduced to estimate 34

the hidden Markov model (HMM) parameters with the ML criterion, 35

and then tested on a multi-aspect under-water target classification 36

problem; in Huo and Chan (1993), a gradient projection method was 37

adopted for HMM training without constraints on the form of the 38

objective function, whose main idea is to search along the projec- 39

tion of the gradient of the objective function on the HMM constraint 40

space for a local maximum. But the efficacy of this method is not val- 41

idated through experiments. The weakness of the BW algorithm and 42

the gradient techniques mentioned above is that they merely gener- 43

ate the sole searching path in the parameter space on which the end- 44

ing point corresponds to one single local maximum of the objective 45
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function. Nevertheless, it is really difficult to find literature focused46

on the learning problem of standard CHMM during recent 10 years.47

In this paper the diversified gradient descent (DGD) algorithm for the48

learning problem of standard CHMM is proposed to obtain diverse49

parameter estimates and find out more local maxima. To the best of50

the authors’ knowledge, proposed approach is unique in the sense51

that it is the first idea so far to achieve more local maxima so that the52

global maximum of the likelihood function of standard CHMM can be53

better approximated or even discovered.54

Conventional HMM-based recognizers focus on building one sin-55

gle model to represent each class, just as if the selected model is56

known a priori. It is well known that the ML criterion may converge to57

the true model only when a sufficiently large number of data is avail-58

able (Nadas, 1983). However, in practice the amount of data is often59

limited, and a discrepancy exists inherently in the ML-based decoder60

since the training is conducted on a model-by-model basis while the61

decoding is carried out by comparing the output of all the models62

(Biem, 2006). Thereby, the uncertainty exists inevitably in the ML63

training and decoding process. Furthermore, naive post model selec-64

tion estimators may underestimate variability, thus lead to overconfi-65

dent inference and might be unstable. It is usually argued that model66

averaging can resolve this problem by combining the estimates of67

numerous good models (Schomaker, 2012; Schomaker & Heumann,68

2014; Wang, Zou, & Wan, 2012). The main idea of model averaging69

is to incorporate the uncertainty associated with the model selec-70

tion process by means of designing a weighted average across a set71

of candidate models, hence yields a robust estimation. Until now, in72

the HMM literature few papers deal with this issue. By making use of73

diversiform models acquired by the DGD algorithm, this paper pro-74

poses a likelihood-based model averaging (LBMA) estimator in order75

to obtain robust estimation of CHMM parameters.76

The rolling bearing is a critical component in almost every rotating77

and reciprocating machinery where bearing fault distribution varies78

from about 40% to 90% from large to small machineries depending on79

the size and type of the machines (Immovilli, Bianchini, Cocconcelli,80

Bellini, & Rubini, 2013). It is always desired to detect bearing faults81

as early as possible, and then repair or replace the damaged bear-82

ing timely to prevent catastrophic failures and reduce the lengthy in-83

dustrial downtime. Thereby, much attention has been given to the84

fault detection and diagnosis of rolling bearings in the past few years85

(Li, Zhang, & He, 2013; Liang & Faghidi, 2014; Zhao, Jin, Zhao, & Li,86

2014). Since the signal generated by a defective bearing is usually87

non-stationary (Liu, Wang, & Golnaraghi, 2010), the HMM is appro-88

priate for bearing fault diagnosis owing to its great ability to char-89

acterize time-varying signals (Zhou et al., 2015). Boutros and Liang90

(Boutros & Liang, 2011) apply the HMM to diagnose faults successfully91

in two scenarios: tool wear/fracture and bearing faults; Lebaroud and92

Clerc (Lebaroud & Clerc, 2008) use the CHMM to classify the stator93

fault, rotor fault, and bearing fault in induction machines; Yuwono et94

al. (Yuwono et al., 2015) detect and diagnose bearing defects based95

on HMM and Swarm Rapid Centroid Estimation which is utilized to96

estimate the hidden state variables for the HMM.97

The fundamental contributions of this paper are as follows. First, it98

derives the learning formula of CHMM parameters based on the DGD99

algorithm. The formula has no constraint on the form of the objec-100

tive function and can acquire diverse transition probabilities as well101

as observation emission densities, thus yielding more local maxima.102

Yet the commonly used Baum–Welch algorithm and the gradient de-103

scent technique, which can be viewed as a special case of the DGD104

algorithm, can only obtain one single local maximum of the objec-105

tive function. Hence, this study provides a better way to approxi-106

mate or even find out the global maxima of the objective function107

of standard CHMM. Second, based upon the diversiform parameter108

estimates, a likelihood-based model averaging estimator is proposed109

to achieve a robust model rather than the best model by combining110

various potentially good parameter estimates. Third, to circumvent111

the computational complexity and guarantee the reliability of CHMM 112

re-estimation procedure, the self-organizing map (SOM), which is an 113

unsupervised learning neural network, is introduced to reduce the 114

dimension of the input vector. This technique can be very useful in 115

the case that the real-life data is high dimensional and some of its 116

components have strong correlation. Lastly, the proposed methods 117

are successfully applied to real-life bearing fault diagnosis problem 118

and satisfied recognition performance is achieved. 119

The remainder of this paper is organized as follows: In 120

Section 2, in the context of CHMMs the DGD algorithm is formulated 121

both for general objective function optimization and ML criterion. 122

Then, the LBMA estimator is proposed to provide robust parameter 123

estimation in Section 3. Section 4 describes the application of the pro- 124

posed methods to the fault diagnosis problem of bearings. Details on 125

feature extraction techniques as well as model training and classifi- 126

cation procedure are described, which include an introduction to the 127

novel technique based on the SOM. Section 5 shows the experimental 128

results of the simulation examples and bearing fault diagnosis task, 129

along with the comparison of the new systems against other recog- 130

nition systems using the same database, followed by our conclusions 131

and future work in Section 6. 132

2. Diversified parameter estimation of CHMM 133

2.1. DGD method for general objective function optimization 134

There are usually two essential issues in the HMM-based recogni- 135

tion. One is the determination of an effective objective function f (λ) 136

with respect to the HMM parameter set λ. The other is to find an 137

appropriate method to adjust the current model λ so as to optimize 138

the objective function f (λ) (Huo & Chan, 1993). In this paper, our 139

main interest is the latter rather than the former. Currently, there is 140

no known way to analytically solve for the latter issue. Alternatively, 141

an iterative procedure ensuring convergence to a local optimum, such 142

as the BW method or the gradient techniques, is the most widely used 143

method (Rabiner, 1989). However, these conventional methods usu- 144

ally update all the parameters, neglecting the important fact that at 145

each step the extent of every parameter approaching its correspond- 146

ing optimal value is very different from each other because of various 147

magnitudes of their derivatives. It is likely that at certain step part 148

of the parameters have already arrived at their optimal values, i.e., 149

their derivatives have been zero, while the others are still far away 150

from their optima. If the iterative procedure continues to adapt all 151

the parameters including those already being optimal, consequently, 152

more iterative steps are required and a good solution may be over- 153

shot. To address the issue, in this study, the diversified learning for- 154

mulas are derived for the CHMM parameters based on the DGD algo- 155

rithm. The main idea of the proposed method, stemming from the 156

work of Friedman and Popescu (2003) about the linear regression 157

problem, is to flexibly select some of the CHMM parameters whose 158

derivatives have been very close to zero not to be updated by setting 159

a gradient-adapting factor during each iterative step. 160

Let us denote an observation sequence as O = o1o2 … oT with each 161

point ot = (ot1, ot2, …, otd) being a d-dimensional random observation. 162

Let us assume that the emission probability density of the CHMM can 163

be approximated by Gaussian mixture densities, i.e., 164

bi(ot ,�i) =
M∑

m=1

cimG(ot ,μim,�im) (1)

where cim is the mixture coefficient for the mth mixture in the 165

state i, and G is the Gaussian density with the mean vector μim = 166

(μim1, . . . ,μimd)
′ and d × d covariance matrix �im = (σimkl)

d
k,l=1

for 167

the mth mixture in the state i. Let λ = {πi, ai j,�i}N
i, j=1

denote the 168

CHMM parameter vector, where π i is the initial state probability, 169
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