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a b s t r a c t

Fuzzy C-means has been utilized successfully in a wide range of applications, extending the clustering
capability of the K-means to datasets that are uncertain, vague and otherwise hard to cluster. This paper
introduces the Fuzzy C-means++ algorithm which, by utilizing the seeding mechanism of the K-means++
algorithm, improves the effectiveness and speed of Fuzzy C-means. By careful seeding that disperses the
initial cluster centers through the data space, the resulting Fuzzy C-means++ approach samples starting
cluster representatives during the initialization phase. The cluster representatives are well spread in the
input space, resulting in both faster convergence times and higher quality solutions. Implementations in
R of standard Fuzzy C-means and Fuzzy C-means++ are evaluated on various data sets. We investigate the
cluster quality and iteration count as we vary the spreading factor on a series of synthetic data sets. We
run the algorithm on real world data sets and to account for the non-determinism inherent in these algo-
rithms we record multiple runs while choosing different k parameter values. The results show that the
proposed method gives significant improvement in convergence times (the number of iterations) of up
to 40 (2.1 on average) times the standard on synthetic datasets and, in general, an associated lower cost
function value and Xie–Beni value. A proof sketch of the logarithmically bounded expected cost function
value is given.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

Partitional cluster analysis is defined as the problem of parti-
tioning a group of objects into clusters that share similar character-
istics. The most well-known and widely used partitional clustering
algorithms are K-means and Fuzzy C-means (Peizhuang, 1983).
When compared across clusters, members of a cluster will be dif-
ferent from members of all other clusters. In order to quantify
the similarity/dissimilarity relationship between objects, metric
functions, defined on both numeric (Euclidean, Manhattan,
Cosine, etc.) or non-numeric (Hamming, Jaro-Winkler,
Levenshtein, etc.) data have been used.

K-means is one of the oldest clustering algorithms (MacQueen,
1967) and refers both to the clustering task and a specific algo-
rithm to solve it. Given a set X of input data and a parameter k,
the task is to choose k representatives of X such that the distances
between any points in X and their representative is minimized. The
set of representatives discovered after running the K-means algo-
rithm is enough to define a clustering of the points in the data
space (the ith cluster being the set of all points in X that are closer
to ri than any other representative).

In contrast to the of K-means where each point belongs to one
cluster, in Fuzzy C-means each point xi in the space belongs to rj,
8j 2 R with lij 2 ½0;1� defined in the membership matrix (of size
n� k where n is the number of points in the data space and k is
the number of representatives). The use of a membership matrix
increases the expressiveness of the clustering analysis, arguably
presenting a more comprehensive view of relationships present
in the data. Further, the hard assignment of the data points by
K-means is inadequate when the points are equally distanced
between representatives, in which case they will be randomly
assigned to one cluster or another (Doring, Lesot, & Kruse, 2006).
Fuzzy C-means mitigates this problem by assigning equal degrees
of belonging through the use of the membership matrix. This
method computes membership degrees at each iteration, a costly
operation that gives a membership degree to a point proportional
to its proximity to the cluster representatives. Moreover, the size of
this matrix grows as a product of the number of points and clus-
ters, making the algorithm computationally expensive for high val-
ues. To reduce the computational burden of the algorithm and at
the same time increase its accuracy, an integration of the
K-means careful seeding algorithm (Arthur, Arthur, Vassilvitskii,
& Vassilvitskii, 2007) into the standard version of Fuzzy C-means
is proposed, analyzed and verified in this paper.

The reminder of the paper is structured as follows: Section 2
presents work improving the performance of Fuzzy C-means; both
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the standard and the proposed algorithm are introduced in
Section 3, together with a proof that shows the theoretical bounds
of the expected cost function; Section 4 presents the datasets and
the evaluation procedure used, and compares the proposed scheme
with the standard algorithm; Section 5 summarizes findings and
considers future work.

2. Background

Although noted both for its simplicity of implementation and its
output validity, Fuzzy C-means suffers from high computational
cost. For each iteration the computational complexity of the algo-
rithm is quadratic in the number of clusters OðNC^2PÞ where N is
the number of data points, C is the number of clusters and P is
the dimension of the data points. A linear complexity approach
OðNCPÞ that removes the need to store a large matrix during the
iterations was proposed in Kolen and Hutcheson (2002). In
Wang, Wang, and Wang (2004) a method to obtain qualitatively
better clusters (as measured using a series of validity indexes) is
proposed. This approach uses a weighted Euclidean distance which
incorporates feature weights. While this method showed promis-
ing results on several UCI databases, it requires a feature weight
learning step of complexity OðN2CPÞ.

Work by Zou, Wang, and Hu (2008) addresses the problem of
initializing the cluster representatives by partitioning the space
into grid blocks (finite disjoint rectangle-like units) and performing
a search for condensation points. A grid block is considered dense if
the number of data points present in it are bigger than a given
input threshold parameter. Condensation points are geometric
centers of dense grid blocks and serve as good initialization points
to be chosen as cluster center before commencing the Fuzzy
C-means algorithm. Although this method works well on
two-dimensional datasets, the question remains how well it would
work for non-spherical cluster types, and what should the block
sizes and density threshold values be.

Yang, Zhang, and Tian (2010) propose a methodology for pick-
ing centres based on subtractive clustering. The potential of each
point to become an initial centre is a function of its neighboring
points: the more neighbors the higher the chance of being picked.
Although promising, being able to select the number of k parame-
ter as well as initializing the algorithm, this method lacks enough
empirical tests on real world datasets. Moreover it has four addi-
tional parameters that need tuning.

Celebi, Kingravi, and Vela (2013) conducted a comparative
study on eight linear-time initialization techniques for K-means
algorithm on a large variety of data sets. The study has looked at
the quality (taking into consideration cost function values, external
validity index) and speed number of iterations and CPU time) of
the approaches. While most of these methods were
non-deterministic (generating different initial points), two of them

were deterministic, picking the same starting points every time
when executed on the same data set. On real data sets, the
non-deterministic methods (such as K-means++ (Arthur et al.,
2007)) performed better than deterministic ones (with respect to
minimum statistic), a fact that can be attributed to multiple local
minima of the datasets and the fact that they were executed mul-
tiple times. However, the authors’ argue that deterministic meth-
ods need only one run, thus total computational complexity
could be lower in their case.

The K-means++ method (Arthur et al., 2007), the basis of this
work, initializes the cluster centers of the K-means algorithm by
selecting points in the dataset that are further away from each
other in a probabilistic manner. This method both avoids the prob-
lems of the standard method and improves speed of convergence,
being theoretically guaranteed to be O (log k), and hence compet-
itive with the optimal solution. While Celebi et al. (2013) used the
standard K-means++ initialization method in their study, we focus
on the more general case and apply it to Fuzzy C-means, using a
parameter to control the spreading. This method improves the
way in which Fuzzy C-means initializes its clusters and has several
advantages over the methods discussed. The method achieves
superior clustering (in terms of validity indexes) compared to
using a random initialization as in the standard and fewer itera-
tions. The proposed method is also easier to understand and imple-
ment and compared to other methods it needs just one parameter
that controls the spreading factor.

The R programming language (R Development Core Team,
2013) is used here with the e1071 package (Meyer, Dimitriadou,
Hornik, Weingessel, & Leisch, 2014) which, as well as containing
standard clustering algorithms, contains useful cluster validity
functions to test the quality of the discovered structures.

3. The algorithms

3.1. Fuzzy C-means algorithm

The standard version of the Fuzzy C-means algorithm
(Peizhuang, 1983) – Algorithm 1) – minimizes the function:

JmðU;RÞ ¼
XN

i¼1

XK

j¼1

lm
ij jxi � rjj2 ð1Þ

subject to

lij 2 ½0;1�;
Xk

j¼1

lij ¼ 18i; 0 <
Xn

i¼1

lij < N; 8N

Algorithm 1: Fuzzy C-means (FCM)

Given X= fxigN
i¼1 and k, return U and R

1: procedure FCM (Data set X, Clusters k)
2: U0 is randomly initialized
3: repeat

4: rj ¼ 1Pn

i¼1
lm

ij

Pn
i¼1lm

ij xi; j ¼ 1 . . . k

5: uij ¼ 1
PC

k¼1

jxi�rj j
jxi�rk j

� � 2
m�1

(3)

6: until jUkþ1 � Ukj < e
7: end procedure

where X = fxigN
i¼1 the set of data points, U = flijg

NK
i;j¼1

the matrix of

membership degrees, k 2 N the number of clusters and R = frigk
i¼1

the set of representatives, m is the fuzzifier parameter which

Fig. 1. Equal sized clusters with no overlap. Real cluster centers are marked in
magenta, Fuzzy C-means initial clusters are marked in red, while in the yellow and
green triangles we have Fuzzy C-means++ (with p = 0.5 and p = 1.8 respectively).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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