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a b s t r a c t

Good knowledge would be expected to help a knowledge-based algorithm more than bad knowledge. In
this research, the precise effect of good versus bad knowledge on evolutionary algorithms is explored. The
testable hypothesis of this paper is that good knowledge will have a significant effect on the evolutionary
mutation process, whereas bad knowledge will have no significant effect. A knowledge-guided evolution-
ary algorithm is developed where ontologies, representing knowledge, are applied to the mutation
process. Bad knowledge is represented as a randomly generated ontology, while good knowledge is
represented by ontologies constructed with domain knowledge and following a formal ontology develop-
ment process. Decision trees are evolved to solve a classification problem. Fitness is classification accu-
racy. The experiment is replicated over 2 data-sets from different domains with one being time-series,
financial data and the other being wine data. As hypothesized, poorly constructed, or bad knowledge,
has no effect while good knowledge is shown to have a significant effect. Bad knowledge, being random
in character in these experiments, has understandably no impact on an already random mutation process.
However, employing knowledge to guide the mutation process significantly constrains the traversal of
the search space. Employing knowledge in an evolutionary algorithm has the potential to increase the
efficiency and accuracy of evolutionary algorithms.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Employing codified domain knowledge to guide the evolution-
ary mutation process of an evolutionary algorithm (EA) has the
potential to increase the efficiency of the EA. The knowledge guides
the EA by mutating genes within an organism to genes which are
semantically similar. A genetic algorithm (GA) is an EA inspired
by natural evolution and capable of locating an optimal solution
in a complex landscape (Zarifia, Ghalehjogh, & Baradaran-nia,
2015). GAs have been applied to complex optimization problems,
such as logistics scheduling (Chang, Wu, Lee, & Shen, 2014).
Combining a GA with another algorithm to improve performance
creates a hybrid GA, with one example being a GA for parameter
optimization of a support vector machine (Chou, Cheng, Wu, &
Pham, 2014). Directed GAs seek to direct the mutation operation
to increase the efficiency and performance of a GA (Kuo & Lin,
2013). Employing knowledge to guide the mutation process is
another option to improve performance of a GA. This research
explores the effect of good versus bad knowledge guiding the
evolutionary process of a GA.

Ontologies are a shared conceptualization of a domain (Gruber,
1993). Ontologies are used for communication between humans,
between human and machine, or between machines, as well as
for computational inference and knowledge reuse (Gruninger &
Lee, 2002). Good, or well-constructed, knowledge is constructed
following formal ontology development processes coupled with
domain knowledge. Bad, or poorly-constructed knowledge is
defined here as an ontology constructed in a random fashion.
Knowledge has been used to improve genetic algorithms by opti-
mizing the feature subset selection for input to a GA (Wendt,
Cortés, & Margalef, 2010; Yang & Honavar, 1998). Case-based rea-
soning has been paired with GAs to find an optimal solution
(Huang, Huang, & Chen, 2007). Heuristics and GAs have been
paired by using GAs to extract heuristics from data (Gordini,
2014) as well as exploiting heuristics to guide the mutation pro-
cess of a GA (Johns, Keedwell, & Savic, 2014; Wimmer & Rada,
2013). The aforementioned research indicates the potential for
knowledge guided evolutionary algorithms.

Evolutionary algorithms, specifically genetic algorithms, are
stochastic in nature and therefore unpredictable and uncontrolled.
Controlling the mutation of an EA via constraining the search oper-
ation may lead to improved performance via improved fitness or
reaching an optimum in fewer generations. Knowledge may be
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exploited to constrain the search; however, first it is necessary to
determine if knowledge can have an effect when guiding the
search and mutation operation. A critical step is to explore good
versus bad knowledge constraining the EA. In order to further
explore the role of knowledge in EAs, specifically GAs, this work
seeks to determine the effect of good versus bad knowledge on
an EA, specifically a genetic algorithm. Genetic algorithms are
stochastic in nature and therefore unpredictable and uncontrolled.
The first hypothesis is formally stated as

Hypothesis 1. When employing poorly or randomly constructed
knowledge to influence the genetic mutation process there will be
no difference between the change in fitness between
knowledge-guided and random mutation.

Furthermore,

Hypothesis 2 states. When employing well-constructed
knowledge to influence the genetic mutation process there will
be a difference in the change in fitness between the
knowledge-guided and random mutation.

To test the hypotheses, the knowledge-guided GA is compared
with a GA that mutates an organism, represented as a decision tree,
at random. First, bad knowledge guiding the mutation is compared
with a random mutation and second, good knowledge guiding the
mutation is compared with a random mutation. The experiment is
performed on 2 datasets from separate domains and each
experiment repeated 5 times for 1000 generations. One of the
aforementioned datasets is time series financial data; therefore,
the experiment is repeated 5 times over a 4 year period for a total
of 20 trials of 1000 generations.

The remainder of this paper is structured as follows: Section 2
provides a background of the framework used to develop the
knowledge guided evolutionary algorithm and subsequent experi-
ments. Section 3 gives an overview of the framework including the
KGGA, datasets and ontologies, Section 4 describes the experi-
ments and results, and Section 5 provides a discussion. Finally,
Section 6 provides concluding remarks and future directions.

2. Background

The following section provides a background of the framework
utilized by the knowledge guided evolutionary algorithm. Decision
trees are reviewed including common decision tree algorithms and
an example. Decision trees are followed by a discussion on evolu-
tionary algorithms. The section concludes with the concept of the
knowledge guided evolutionary algorithm.

2.1. Decision trees

Techniques, such as decision trees, have been widely studied
and applied to a plethora of issues in computing. Decision trees
are directed graphs that are employed to aid in the decision mak-
ing process and used to classify data (Apté & Weiss, 1997). Decision
trees are based on nodes and edges. A decision tree may be defined
by its nodes and edges such as decision tree D has nodes in the set
{N1,N2,. . .,Ni} and edges may be defined as two nodes in the tree
such that edge E = {Nx, Ny}. There is a root node which may be
defined as the initial or top node. It is also defined as a node with
no parent nodes. Child nodes may be referred to as inner nodes.
Additionally, a terminating node, which is referred to as a leaf
node, is a node which has no additional child nodes. Decision trees
divide, or split, on a node. This is referred to as branching. Trees
also have depth which may be defined as the number of edges to
reach the root node. The root node is considered a level or depth
of 0. Decision trees create unique paths to the various terminating

– or leaf – nodes. Each of these paths represents a potential deci-
sion. These unique paths may be extracted as a rule set with each
representing a separate rule based on specific conditions.

Machine learning is an artificial intelligence technique in which
computer algorithms train themselves based on input data in order
to make predictions (Mitchell, 1997). More formally, machine
learning may be defined as ‘‘A computer program is said to learn
from experience E with respect to some class of tasks T and perfor-
mance measure P, if its performance at tasks in T, as measured by
P, improves with experience E’’ (Mitchell, 1997). There are four
machine learning algorithms for decision trees which are com-
monly utilized and implemented in data mining software pack-
ages. Classification and regression tree – or CART – is an
umbrella term applied to techniques which predict the class of
an instance (classification) or a numerical attribute such as price
(regression) (Loh, 2011; Olshen & Stone, 1984; Ripley, 2005).
More specific decision tree algorithms are Chi-Squared
Automated Interaction Detector (CHAID), ID3, and C4.5. CHAID
employs statistical significance testing to determine nodes and
splits within the decision tree (Ozgulbas & Koyuncugil, 2009).
Typically, Bonferroni testing is utilized, although the algorithm
may be customized using other statistical tests based on the appli-
cation. ID3 computes the maximum information gain or least
amount of entropy. First, a data set’s attributes are checked to
determine which has the maximum information gain. The root
node becomes the attribute with the highest information gain
and then the remaining attributes are passed again to the ID3 algo-
rithm recursively until all instances have been classified or all attri-
butes utilized. The algorithm may be customized in many ways
that are application specific such as defining a maximum depth
(Quinlan, 1986). C4.5 is an extension of ID3 which provides sup-
port for non-discretized values (Quinlan, 1993). C4.5 has since
been extended to C5.0 which, unlike ID3 and C4.5, is a proprietary
algorithm (Quinlan, 2012).

Decision trees may be extracted into heuristics which can be
used for decision support. The weather dataset is a standard data-
set available from the UCI Machine Learning Repository (Bache &
Lichman, 2013) and applied to decision tree learning such as
random forest generation (Livingston, 2005). The dataset has 5
attributes and 14 records which are used to predict whether to
play a game based on the weather. Fig. 1 presents the weather
dataset in ARFF format. Fig. 2 shows a C4.5 decision tree created

Fig. 1. Weather dataset from the UCI machine learning repository in ARFF format.
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