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a b s t r a c t

The growing technology industry has led to the steady enhancement of expert systems, often at the cost
of increased complexity for the systems’ end users. Efforts to improve the prescriptive elements of sys-
tems, however, often prove unsuccessful, since the nature of complex and high-dimensional decision
problems is difficult to capture precisely by models and algorithms. To rectify this deficiency, comple-
mentary softwares may be used to accept decision-making input from users. In this paper, we introduce
a graphical interface-based multi-criteria decision support system for designing radiation therapy treat-
ment plans. While many automated strategies for treatment plan generation exist in the literature, they
often require a large amount of iteration and a priori decision-making in practice, so much of the planning
is done manually. Our interface, morDiRECT (the Medical Operations Research Laboratory’s Display for
Ranking and Evaluating Customized Treatments) uses the variability associated with the planning param-
eters to generate diverse plan sets automatically, creating a comprehensive and visible decision space for
users. We demonstrate morDiRECT’s generation process, built-in analytical tooling and graphical display
using four clinical case studies. In three cases, we find plans that fully dominate the benchmark forward
plans, as well as additional plans that possess potentially desirable tradeoffs for all cases. Our results
demonstrate that with relatively little upfront effort, users can pre-generate and choose from a diverse
set of clinically acceptable plans, leading to reliable treatments for head-and-neck patients.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Medical technology has advanced considerably over the past
few decades, paving the way for a rapid evolution in radiation ther-
apy treatment tools (Schimpff, 2014). As these tools grow in
sophistication, the analytical complexity and resultant cognitive
loading placed on their operators increases dramatically
(Ruotsalainen, Boman, Miettinen, & Tervo, 2009). In order to allevi-
ate some of this demand, we introduce a graphical user interface
(GUI) called morDiRECT (the Medical Operations Research
Laboratory’s Display for Ranking and Evaluating Customized
Treatments) to support expert users through the non-trivial tasks
of radiation therapy treatment planning and selection.

The radiation therapy delivery process can be broken down into
five key stages, depicted in Fig. 1. The majority of the tools
designed to facilitate this process aim to support the more

mechanical Stages 1 and 5 (21st Century Oncology, 2013; Elekta
AB, 2013; General Electric Company, 2013; IBA, 2013; Philips,
2013). In contrast, the intermediate planning done in Stages 2–4,
tends to be less supported, relying heavily on human operators
(National Cancer Institute, 2014). Due to the complex nature of
these planning stages, automated strategies such as inverse plan-
ning have become a prevalent source of discussion in the radiation
therapy literature (Romeijn & Dempsey, 2008; Webb, 2014). The
high versatility of inverse planning has also led to extensions to
similar problems within the field, such as Leksell Gamma Knife�

radiosurgery treatment (Ferris & Shepard, 2000; Ferris, Lim, &
Shepard, 2002; Ferris, Lim, & Shepard, 2003; Ghobadi, Ghaffari,
Aleman, Jaffray, & Ruschin, 2012; Ghobadi, 2014; Shepard, Yu,
Murphy, Bussière, & Bova,2015; Shepard et al., 2015; Wu et al.,
2003; Wu et al., 2004).

Inverse planning methodologies fall into a class of algorithms
that specifically target Stage 3 of the delivery process. Stage 3 is
difficult by nature as it is associated with a detailed understanding
of the technology, as well as the case at hand. While carrying out
this stage (either manually or with the help of traditional inverse
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planning software) the radiation physicist must use trial and error
to balance a potentially large number of competing treatment
objectives and complex machine specifications simultaneously.
Failure to account for all the relevant objectives can be costly for
both the patient and the hospital, as it may lead to the subsequent
rejection of the proposed plan in Stage 4, and thus require further
iterations. Proposals to remedy this issue typically employ either
automatic or interface-based extensions to the existing inverse
planning frameworks, in an effort to reduce the associated cogni-
tive loading.

Among the automatic class of extensions are several
multi-objective optimization techniques that have been broadened
to incorporate expert preferences. These methods include hierar-
chical constraint tightening (or loosening) (Breedveld, Storchi,
Keijzer, Heemink, & Heijmen, 2007), transformed statistical rank-
ings (Lourenzutti & Krohling, 2014), decision theory-based rank-
ings (Yu, 1997), stochastic analytical hierarchy processes (SAHP)
(Cobuloglu & Büyüktahtakın, 2015) and lexicographic ordering
(Long et al., 2012). A related form of automation is the
case-based reasoning approach, which circumvents the need for
concrete objectives in favour of choosing solutions based on simi-
larities to past cases (Lolli, Ishizaka, Gamberini, Rimini, & Messori,
2015; Petrovic, Mishra, & Sundar, 2011). The major drawback of
these algorithms is the rigidity that stems from an absence of
human interference. While there is a potential gain in terms of
speed and the reduction of human error, new errors are introduced
by a priori decision-making that may not be universally acceptable.
Additionally, each algorithm only outputs a single plan, meaning
that in the case of a rejection, the burden for generating a subse-
quent plan is placed back on the radiation physicist.

In practice, treatment planning can involve a high degree of
uncertainty (Romeijn & Dempsey, 2008) and even advanced algo-
rithms tend to be quite specialized and are consequently no match
for their human counterparts in terms of adaptability (Bonczek,
Holsapple, & Whinston, 2014; Haight, 2010; Wickens, Lee, Liu, &
Gordon-Becker, 2004). For this reason, successfully integrated
decision support systems should provide a well-balanced alloca-
tion of tasks between experts and automation, motivating the
interface-based class of extensions. Although interfaces are a
well-established method to support human decision making
(Grandjean & Kroemer, 1997; Korhonen & Wallenius, 1988;
Lotov, Bushenkov, & Kamenev, 2004; Wickens et al., 2004), and
have been more specifically addressed as useful in the field of med-
icine (Thyvalikakath et al., 2014; Aigner & Miksch, 2006;
Gschwandtner, Aigner, Kaiser, Miksch, & Seyfang, 2011), they are
still under-utilized in public health applications (Aigner &
Miksch, 2006; Thyvalikakath et al., 2014; Yasnoff & Miller, 2014).
Interfaces that are implemented frequently lack sophistication,

making them less effective in their task of reducing the user’s cog-
nitive load (Wickens et al., 2004; Yasnoff & Miller, 2014).

Cotrutz and Xing (2002) present an interface concept for itera-
tive radiotherapy plan improvement based on adjusting localized
areas of a commonly used plan assessment plot called a dose vol-
ume histogram, though their methodology is only intended for fine
tuning and their interface is not explicitly developed. Otto (2014)
introduces a supervised approach for iterative dose design, along
with a custom interface that uses a speedy approximation algo-
rithm to ensure treatment plans are feasible. Since dosages must
be designed before the computationally intensive optimization is
run, plan characteristics such as the duration of the treatment will
be unknown at the time of plan selection, and may consequently
suffer in quality. Hence, while utilizing the planning system is sim-
pler than unsupervised plan design, it is still a cognitively intensive
task for clinicians.

Jain, Kahn, Drzymala, Emami, and Purdy (1993) also introduce a
radiation therapy interface to support their plan ranking model,
however, this fairly simple and tabular interface is only intended
to support the selection process, not the plan generation. Hanne
and Trinkaus (2003) present a fairly comprehensive spider plot
interface called knowCube. While their interface does demonstrate
a large range of functionality, their spider plot presentation modal-
ity makes it difficult to visualize multiple plan alternatives concur-
rently and their generation process is rigidly set to generate 1000
plan alternatives, rather than taking input from the planner.
Lotov et al. (2004), Bortz et al. (2014) and Korhonen and
Wallenius (1988) all discuss the design of Pareto front based inter-
faces, but do not deal with radiation therapy, while Craft, Halabi,
Shih, and Bortfeld (2006) and Wang, Jin, Zhao, Peng, and Hu
(2014) provide an analysis of Pareto tradeoffs in radiation therapy
planning, but do not include an interface. Rosen, Liu, Childress, and
Liao (2005), Ehrgott and Winz (2008) and Aubry, Beaulieu, Sévigny,
Beaulieu, and Tremblay (2006), on the other hand, do use
Pareto-optimality to generate radiation therapy interfaces. Rosen
et al. (2005) introduce TPEx, a simplified dose volume
histogram-based interface which allows experts to navigate
through a number of allowable plans. The navigation, however, is
performed strictly in terms of dose and volume properties and ulti-
mately, the final plan is generated using a non-deterministic algo-
rithm, leading to potential inconsistencies for the end user. Ehrgott
and Winz (2008) and Aubry et al. (2006) both provide simpler
interfaces, with basic filtering functionality for plan selection.

A prevailing issue with all the above-mentioned designs comes
from the concept of choosing only Pareto optimal plans, while
simultaneously limiting the number of objectives. By restricting
the results to the Pareto front, plans with benefits that are unquan-
tified in the objective function are discarded, obscuring potentially

Fig. 1. Key stages in radiation therapy delivery.
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