
An integrated architecture for fault diagnosis and failure prognosis of
complex engineering systems

Chaochao Chen a,⇑, Douglas Brown a, Chris Sconyers a, Bin Zhang b, George Vachtsevanos a,
Marcos E. Orchard c

a School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
b Impact Technologies LLC, Rochester, NY 14623, USA
c Electrical Engineering Department, University of Chile, Av. Tupper 2007, Santiago, Chile

a r t i c l e i n f o

Keywords:
Fault diagnosis
Failure prognosis
.NET framework
Particle filtering
Bayesian theory
Software architecture

a b s t r a c t

Complex engineering systems, such as aircraft, industrial processes, and transportation systems, are
experiencing a paradigm shift in the way they are operated and maintained. Instead of traditional sched-
uled or breakdown maintenance practices, they are maintained on the basis of their current state/condi-
tion. Condition-Based Maintenance (CBM) is becoming the preferred practice since it improves
significantly the reliability, safety and availability of these critical systems. CBM enabling technologies
include sensing and monitoring, information processing, fault diagnosis and failure prognosis algorithms
that are capable of detecting accurately and in a timely manner incipient failures and predicting the
remaining useful life of failing components. If such technologies are to be implemented on-line and in
real-time, it is essential that an integrating system architecture be developed that possesses features
of modularity, flexibility and interoperability while exhibiting attributes of computational efficiency
for both on-line and off-line applications. This paper presents a .NET framework as the integrating soft-
ware platform linking all constituent modules of the fault diagnosis and failure prognosis architecture.
The inherent characteristics of the .NET framework provide the proposed system with a generic architec-
ture for fault diagnosis and failure prognosis for a variety of applications. Functioning as data processing,
feature extraction, fault diagnosis and failure prognosis, the corresponding modules in the system are built
as .NET components that are developed separately and independently in any of the .NET languages. With
the use of Bayesian estimation theory, a generic particle-filtering-based framework is integrated in the
system for fault diagnosis and failure prognosis. The system is tested in two different applications—bear-
ing spalling fault diagnosis and failure prognosis and brushless DC motor turn-to-turn winding fault diag-
nosis. The results suggest that the system is capable of meeting performance requirements specified by
both the developer and the user for a variety of engineering systems.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

A reliable and real-time fault diagnosis and failure prognosis
system constitutes the major condition monitoring and assessment
block of Condition-Based Maintenance (CBM) and Prognostics and
Health Management (PHM). Its four principal components are:
data processing, feature extraction, fault diagnosis and failure progno-
sis (Vachtsevanos, Lewis, Roemer, Hess, & Wu, 2006). Research over
the past years has focused particularly on the development and
application of algorithms and tools for these modules in a variety
of engineering systems (Chen, Vachtsevanos, & Orchard, 2010;
Chen, Zhang, & Vachtsevanos, 2012; Chen, Zhang, Vachtsevanos &

Orchard, 2011; Heng et al., 2009; Hillerstrom, 1996; Orchard &
Vachtsevanos, 2009; Wang, 2008).

As CBM and PHM technologies continue to mature and algo-
rithms are developed and tested to meet specified requirements,
the military and industrial sectors are eager to witness a transi-
tioning phase that will bring these technologies on-board their
critical assets. In order to accomplish this crucial step, additional
technologies must be developed to assist the transitioning phase.
For example, verification and validation (V&V) tools are essential
if diagnostic and prognostic modules are to be qualified for air wor-
thiness or other important application domains. Amongst them is
the need for integrating frameworks that will aggregate efficiently
and effectively the diverse components of the PHM architecture.

Few attempts have been reported on the development of a
generic, modular and flexible software architecture that integrates
effectively and efficiently diagnostic and prognostic routines

0957-4174/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2012.02.050

⇑ Corresponding author. Tel./fax: +1 404 894 4130.
E-mail address: chaochao.chen@gatech.edu (C. Chen).

Expert Systems with Applications 39 (2012) 9031–9040

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2012.02.050
mailto:chaochao.chen@gatech.edu
http://dx.doi.org/10.1016/j.eswa.2012.02.050
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


(Propes et al., 2002; Zhou et al., 2005). However, there is a growing
need for such an architecture since the system developer is contin-
ually expected to produce new and improved algorithms for system
components more efficiently and modularly and to integrate these
algorithms with existing ones more easily and seamlessly; the sys-
tem user, on the other hand, would prefer the ‘‘pushbutton’’ ap-
proach, that minimizes the effort for both the software
installation and usage without the need for recoding, recompilation
and redebugging.

From the standpoint of the system developer, the ideal architec-
ture must possess the following features:

(1) Modularity—Each system component is established as an
individual module and utilized independently.

(2) Flexibility, including
a. Flexibility in system components update and integration.
b. Flexibility in programming languages.

(3) Interoperability—The system is able to access the functional-
ities that are implemented outside the current software
environment.

From the point of view of the system user, the following addi-
tional features are desirable:

(1) ‘‘Pushbutton’’—Only minimum effort and expertise required
in system usage. There are no advanced skills or training
needed to use the system.

(2) Simplified deployment—The system is deployed easily on
the target computers.

(3) Real-time—The system is implemented in real-time.
(4) Friendly Graphical User Interface (GUI).
(5) Easy update—The algorithms and parameters of each sys-

tem component are updated conveniently, and additional
components can be added without changing the existing
ones.

The inherent features of the .NET framework (Chen, Brown,
Sconyers, & Zhang, 2010), including modularity, interoperability,
programming language independence, simplified deployment and
a base class library with a large range of functions, meet the perfor-
mance requirements stated above from both the developer’s and
the user’s standpoint. Details are described in the sequel.

A generic Bayesian state estimation technique, called particle
filtering, has been developed and will be employed, in combination
with real-time measurement and fault modeling, to implement the
proposed .NET fault diagnosis and failure prognosis (Orchard,
2006; Patrick, 2006). It is well known that the Bayesian estimation
algorithms are appropriate to solve the problems of real-time state
estimation, since they can incorporate process data into the a prior
state estimation by considering the likelihood of sequential mea-
surements. As a recursive Bayesian algorithm, particle filtering is
the sequential Monte Carlo method that can use any state-space
fault models to estimate and predict the behavior of a faulty
system.

The .NET framework is utilized in this work as the foundation of
the system architecture, and the four system modules, data pro-
cessing, feature extraction, fault diagnosis and failure prognosis, are
built as the .NET components. A general particle-filtering-based
framework is integrated in the system to achieve the real-time
fault diagnosis and failure prognosis. The system is tested in two
different types of engineering systems and the results are
discussed.

The remainder of this paper is organized as follows: In the next
Section, the .NET framework is introduced. Section 3 presents the
architecture of the system, and a generic particle-filtering-based

framework for fault diagnosis and failure prognosis is described.
Two cases, bearing spall fault diagnosis and failure prognosis and
brushless DC motor turn-to-turn winding fault diagnosis, are stud-
ied in Section 4. Finally, Section 5 provides a few concluding
comments.

2. .NET framework

The .NET framework is a windows-based software framework
provided by Microsoft, which has been regarded widely as a para-
mount technology in the software world. All other Microsoft tech-
nologies in the future are believed to be depended on it. The
framework possesses two main components: the common lan-
guage runtime (CLR) and the .NET framework class library.

Functioning as a software execution environment, the CLR is the
foundation of the .NET framework providing a large range of ser-
vices, such as memory management, thread management, en-
hanced security, debugging and profiling services, exception
handling, and code checking and compilation, to aid the system
developer during the creation of .NET components. The class li-
brary is a comprehensive, object-oriented code collection that
can be combined with the developer’s own codes to be used in a
variety of applications. Note that this class library can be accessed
from any of the .NET languages. Therefore, what all programmers
have to learn is only this single library even if different program-
ming languages, such as Visual Basic .NET and Visual C#.NET, are
utilized.

Fig. 1 shows the architecture of this framework. The source
codes written in any of the .NET languages are compiled into
Microsoft Intermediate Language (IL) that is processor indepen-
dent and can be portable to a number of platforms. A variety of
instructions are included in IL for different types of operations,
such as loading, storing, initializing, and calling methods on ob-
jects, as well as arithmetic and logical computation, control flow,
direct memory access, and exception handling. Then, the IL is
delivered to the user in the form of DLL and/or EXE. Finally, Just-
In-Time (JIT) compilers provided by Microsoft compile the IL into
native machine code. Note that the JIT compilers only convert
the IL as needed during execution and store the resulting native
code for subsequent calls, which results in a fast code execution
speed.

The .NET framework can be regarded theoretically as platform
independent at the present time, since Microsoft only provides
Windows-based CLR to convert IL into native platform codes de-
spite the fact that IL codes are platform independent. Currently,
the third-party Mono project has been designed to allow the
.NET developers to easily implement .NET applications on Linux.

The .NET framework possesses a number of features that are
well suited to meet the performance requirements of fault diagno-
sis and failure prognosis of a given system. Firstly, the object-ori-
ented coding style in the framework allows the developer to
build up a modular and flexible software system. Secondly, the
framework possesses excellent interoperability. The developer
can access not only the codes written in any of the .NET languages
but also those executed outside the .NET environment. Any of the
.NET languages, such as Visual Basic, Visual C++, Visual C# and
Visual J#, can be utilized as the programming language, and many
other popular languages such as JAVA and MATLAB also can be eas-
ily converted into the .NET languages. Thirdly, the framework pro-
vides a class library with a huge amount of functionality such as
file reading and writing, graphic rendering and window forms,
which aids the system developer to decrease massively the coding
workload. Finally, simplified deployment can be achieved by either
the exclusive tools in Visual Studio .NET or as simple as XCOPY
operations.

9032 C. Chen et al. / Expert Systems with Applications 39 (2012) 9031–9040



Download English Version:

https://daneshyari.com/en/article/10322393

Download Persian Version:

https://daneshyari.com/article/10322393

Daneshyari.com

https://daneshyari.com/en/article/10322393
https://daneshyari.com/article/10322393
https://daneshyari.com

