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a b s t r a c t

The Nadaraya–Watson estimator, also known as kernel regression, is a density-based regression technique.
It weights output values with the relative densities in input space. The density is measured with kernel
functions that depend on bandwidth parameters. In this work we present an evolutionary bandwidth opti-
mizer for kernel regression. The approach is based on a robust loss function, leave-one-out cross-validation,
and the CMSA-ES as optimization engine. A variant with local parameterized Nadaraya–Watson models
enhances the approach, and allows the adaptation of the model to local data space characteristics. The
unsupervised counterpart of kernel regression is an approach to learn principal manifolds. The learning
problem of unsupervised kernel regression (UKR) is based on optimizing the latent variables, which is a
multimodal problem with many local optima. We propose an evolutionary framework for optimization
of UKR based on scaling of initial local linear embedding solutions, and minimization of the cross-validation
error. Both methods are analyzed experimentally.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Kernel-based machine learning methods have shown great
success in the last decades. Many successful methods like support
vector machines (SVM) (Schölkopf & Smola, 2001; Suykens &
Vandewalle, 1999; Vapnik, 1995) are based on quadratic program-
ming as the corresponding problem can be formulated as convex
optimization problem. But there are also cases when the employ-
ment of stochastic optimization is reasonable in machine learning,
e.g., in case of non-convex optimization problems induced by non-
positive definite kernel functions, noisy optimization problems,
e.g., from real-world data observations, non-differentiable loss
functions (e.g. the L1 loss) or large data sets that may afford parall-
elization. Stochastic search like evolutionary algorithms may help
to overcome these problems. Evolutionary computation has grown
to a rich field of powerful methods for global optimization. They
are embarrassingly parallelizable, and thus fairly efficient search
methodologies in distributed computing scenarios.

There are already many examples in literature that show that
evolutionary methods are successful in kernel-based machine
learning. Stoean, Dumitrescu, Preuss, and Stoean (2006), Stoean,
Preuss, Stoean, and Dumitrescu (2007) and Stoean, Stoean, E-Darzi,
and Dumitrescu (2009a, 2009b) directly solve the primal optimiza-
tion problem of SVMs to find the optimal discriminant function for
regression and classification tasks by means of evolution

strategies. Mierswa and Morik (2008) investigated simple data
sets, in which feature spaces induced by usual kernel functions fail.
They propose a generic kernel learning scheme that is based on
non-convex optimization. Furthermore, Mierswa (2006) explicitly
optimizes the inherent tradeoff between training error and model
complexity of SVMs by means of multi-objective evolutionary
algorithms, i.e., NSGA-II (Deb, Pratap, Agarwal, & Meyarivan,
2002). An example for the application of evolutionary methods
to combinatorial problems in kernel-based machine learning
stems from Gieseke, Pahikkala, and Kramer (2009). They solve
the combinatorial problem of assigning elements to proper clus-
ters with a (1 + 1)-EA. The approach aims at finding an optimal
partitioning of data into two classes, i.e., at solving a mixed integer
problem. With the help of a kernel matrix approximation shortcut,
computational costs can be reduced during the approximation,
and the evaluation of a huge set of solutions is possible within rea-
sonable time.

The purpose of this paper is to show that evolutionary continu-
ous methods, in particular CMSA-ES and a Powell ES, are good in
exploring the search space of kernel bandwidths of kernel regres-
sion (KR), and the search space of latent variables of the unsuper-
vised counterpart UKR. In Section 2 we introduce the evolutionary
KR variant based on the Nadaraya–Watson estimator (Nadaraya,
1964; Watson, 1964) with a parameterized kernel function, Hu-
ber’s loss function (Huber, 1981), and robust leave-one-out cross-
validation (LOO-CV). The covariance matrix adaptation evolution
strategy CMSA-ES is used for adaptation of the kernel parameters.
In Section 3 we introduce an evolutionary engine for the unsuper-
vised counterpart of kernel regression for learning principal mani-
folds. Here, the CMSA-ES is used for optimization of the scaling
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parameters of initial local linear embedding solutions, and minimi-
zation of the cross-validation error. In Section 4 we summarize the
results and give an outlook to future research perspectives.

2. Evolutionary kernel regression

In this section we will introduce a variant of kernel regression
conducting evolutionary search in the space of kernel bandwidths.

2.1. Regression

Regression is a field of statistical learning that comprises meth-
ods to predict output values y 2 Rd to given input values x 2 Rq

based on sets of input–output examples. The goal is to learn a func-
tion f:x ? y known as regression function. We assume that a data
set consisting of observed pairs (xi,yi) 2 X � Y is given. We assume
that the ground truth f is unknown, and the task of our regression
model is to estimate f by learning a ‘‘good’’ model f̂. In particular,
the regression model should fulfill two conditions: First, it should
reconstruct the observed data, and second, it should generalize
and predict unknown mappings.

Simple linear regression has been successfully applied for more
than 150 years (Weisberg, 1985). It is based on the assumption that
the relationship between y and x is approximately linear. A kernel-
based regression function estimator is support vector regression.
The goal of �-SVR introduced by Vapnik (1995) is to learn a func-
tion f̂ with only an �-deviation of the target outputs yi. The idea
is to fit a linear function of the form f(x) = hw,xi + b with b 2 R

and dot product h.,.i. Smola and Schölkopf (1998) present a com-
prehensive tutorial to SVR and nonlinear kernel-based methods.
Many other methods have been proposed in the past, e.g., locally
weighted projection regression (LWPR) (Vijayakumar & Schaal,
2000), or an evolutionary approach to least trimmed squares by
Morell, Bernholt, Fried, Kunert, and Nunkesser (2008). A complete
depiction of regression methods goes beyond the scope of this
work that has a focus on evolutionary tuning of supervised and
unsupervised kernel (density) regression.

2.2. Kernel density estimation

The first important ingredient of kernel regression is kernel
density estimation, which stems from statistics. Kernel density
estimation is a method for estimation of distributions (Parzen,
1962). It can be seen as a smooth version of histograms that count
the number of samples in consecutive intervals. The kernel density
approximation of the probability density function is:

pðxÞ ¼ 1
Nh

XN

i

K
x� xi

h

� �
; ð1Þ

with a kernel function K : Rd ! R that measures the density at
point x (see Section 2.4), and the so-called bandwidth parameter
h. Eq. (1) is also known as Parzen window estimator. The bandwidth
h has a similar meaning like the width of histogram bins as they de-
fine the width of the influence of kernel K. Intuitively, the kernel
density estimator places small bumps1 at each observation and
the whole function p(x) becomes the sum of bumps. Recently, Ozakin
and Gray (2010) have shown that due to correlations between vari-
ables, kernel density estimation is more effective than it has previ-
ously been believed. This is because real data is often lying on a
low-dimensional ‘‘sub-manifold’’.

2.3. Nadaraya–Watson estimator

Kernel regression makes use of kernel density estimates, and
weights the output values with relative kernel densities. The idea
has been introduced by Nadaraya (1964), Watson (1964), and is known
as Nadaraya–Watson estimator. The Nadaraya–Watson estimator
combines the expression of the regression problem as joint marginal
distribution:

f�ðxÞ ¼
Z

ypðyjxÞy ¼
Z

y
pðx; yÞ
pðxÞ dy; ð2Þ

with the Parzen window estimator (see Eq. (1)). In the multivariate
expression the Nadaraya–Watson estimator weights the output val-
ues of the training samples with their relative kernel densities:

fðx; HÞ ¼
XN

i¼1

yi
KHðx� xiÞPN
j¼1KHðx� xjÞ

: ð3Þ

Bandwidth matrix H contains the bandwidths. It is a diagonal matrix
in the multivariate variant of a Gaussian kernel, see Section 2.4. The
bandwidth is an important parameter that controls the smoothness
of the predicted function. We will discuss the influence of the band-
widths in the following section.

Let N be the set of the data sample archive. For the prediction of
the function value of one data sample, N kernel densities have to be
computed, i.e., the prediction of bN data samples can be computed
in OðN � bNÞ.
2.4. Kernel functions

Kernel regression is based on a density estimate of data samples
with a kernel function K : Rd ! R. A typical kernel function is the
Gaussian (multivariate) kernel:

KGðzÞ ¼
1

ð2pÞq=2 detðHÞ
exp �1

2
jH�1zj2

� �
; ð4Þ

with bandwidth matrix H = diag(h1,h2, . . . ,hq). Another frequent
choice – due to its convenient characteristics – is the Epanechnikov
kernel:

KEðzÞ ¼ D
jzj
h

� �
; ð5Þ

with

DEðtÞ ¼
3
4
½1� t2�þ ¼

3
4 � ð1� t2Þ jtj < 1;
0 jtjP 1:

(
ð6Þ

The bandwidth h defines the radius of the supported region, similar
to the standard deviation of the Gaussian function. The Epanechni-
kov kernel exhibits useful asymptotic characteristics. For h ? 0 it
reconstructs the data points, for h ?1 it averages the over all N
data points (Härdle & Simar, 2007).

An essential part of kernel regression is the bandwidth h. For
small bandwidths the estimate generates small bumps at the loca-
tions of the sample points. For large bandwidths an overgeneraliza-
tion hides the real structure of the sample distribution, and leads to
oversmoothing. Fig. 1 shows three different bandwidth for the
Epanechnikov kernel. The left plot shows a situation of an overfit-
ted, too small bandwidth, that only reconstructs the data points
and their close neighborhood. The right plot shows the opposite:
an undersmoothed model with an oversized bandwidth. The band-
width in the middle allows to estimate the structure of the under-
lying distribution. An experimental illustration of the influence of
bandwidth choices on the regression model will be shown in the
experimental part in Section 2.8.1 In case of a Gaussian kernel the bumps have a Gaussian shape.
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