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a b s t r a c t

EEG experts can assess a newborn’s brain maturity by visual analysis of age-related patterns in sleep EEG.
It is highly desirable to make the results of assessment most accurate and reliable. However, the expert
analysis is limited in capability to provide the estimate of uncertainty in assessments. Bayesian inference
has been shown providing the most accurate estimates of uncertainty by using Markov Chain Monte Car-
lo (MCMC) integration over the posterior distribution. The use of MCMC enables to approximate the
desired distribution by sampling the areas of interests in which the density of distribution is high. In
practice, the posterior distribution can be multimodal, and so that the existing MCMC techniques cannot
provide the proportional sampling from the areas of interest. The lack of prior information makes MCMC
integration more difficult when a model parameter space is large and cannot be explored in detail within
a reasonable time. In particular, the lack of information about EEG feature importance can affect the
results of Bayesian assessment of EEG maturity. In this paper we explore how the posterior information
about EEG feature importance can be used to reduce a negative influence of disproportional sampling on
the results of Bayesian assessment. We found that the MCMC integration tends to oversample the areas in
which a model parameter space includes one or more features, the importance of which counted in terms
of their posterior use is low. Using this finding, we proposed to cure the results of MCMC integration and
then described the results of testing the proposed method on a set of sleep EEG recordings.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Early diagnosis of abnormal newborn brain development is a
challenging problem in the developmental neurology and clinical
neonatology. Experts attempt to assess brain maturity by visual
analysis of age-related patterns in electroencephalograms (EEG)
recorded from sleeping newborns (Holthausen, Breidbach, Scheidt,
& Frenzel, 2000; Tharp, 1990). The analysis can take hours of ex-
pert work to confidently interpret sleep EEG, as the age-related
patterns widely vary during sleep hours as well as between pa-
tients, and there are no regular rules for interpretation of these pat-
terns (Cooper, Binnie, & Schaw, 2003). There are neurological
evidences that the post-conceptional ages (PCA) of healthy new-
borns normally match their EEG-estimated ages. In cases when
the mismatch is observed during two and more weeks, the new-
born’s brain development is most likely abnormal (Scher, 1997).
Thus, the mismatch between PCA and EEG-estimated ages can alert
about abnormal brain development.

In the first publications on EEG assessment of newborn brain
development (Parmelee et al., 1968), the experts have visually ana-
lysed 47 EEG recordings made in 11 PCA groups between 39 and

43 weeks. The experts have found 10 maturity-related EEG pat-
terns. Then the experts have estimated the PCA of each EEG record-
ing by counting the distribution of the maturity-related patterns.
The expert estimates have exactly matched the stated PCA in
27.6% of cases. In 59.5% the matches were within ±1 week, and
77.5% of cases were found matching within ±2 weeks.

In later publications, it has been attempted to learn brain devel-
opment models from sleep EEG data recorded from newborns
whose maturation was preliminary estimated by experts. In Scher,
Steppe, and Banks (1996), the regression models have been applied
to mapping the brain maturity into EEG index. In Crowell, Kapuniai,
and Jones (1978) and Schetinin and Schult (2005), the classification
models have been used for distinguishing the maturity levels, at
least, for one normal and one abnormal levels of brain development.

The above attempts were aimed at learning a single model pro-
viding the maximum likelihood on given EEG data. However such
models cannot ensure the maximum accuracy when the likelihood
distribution is affected by noise and its shape is multimodal. Be-
sides, the model selection methodology cannot provide estimates
of a full posterior distribution which is required for accurate
assessment of the uncertainty in model outcomes.

In contrast, Bayesian classification enables the uncertainty to be
accurately estimated via averaging over areas of high densities of
the likelihood (Armero, Artacho, Lopez-Quilez, & Verdejo, 2011;
Chipman, George, & McCullock, 1998; Denison, Holmes, Malick, &
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Smith, 2002; Duda, Hart, & Stork, 2000). The estimates of
uncertainty are made over an ensemble of classification models ob-
tained during Bayesian averaging. The use of Decision Trees (DTs) as
classification models enables to select features which make the
most significant contribution to the classification. The feature selec-
tion becomes important when prior information on EEG feature
importance is absent or deficient. Besides, DTs are attractive classi-
fication models as experts can interpret them. In the case of ensem-
bles, a single DT providing a Maximum Posterior can be selected for
interpretation as we proposed in Schetinin et al. (2007).

The results of implementation of Bayesian averaging are criti-
cally dependent on the prior information and on the model param-
eter diversity in areas of averaging. When averaging is done over
areas of interest with maximum likelihood, the resultant class pos-
terior distribution is unbiased, and therefore the classification error
is minimal. The use of prior information enables to specify the areas
of interest and thus to improve diversity in model parameters.

Particularly, the prior information on EEG feature importance
can be absent and so the areas of interest cannot be explicitly spec-
ified and then explored in detail (Domingos, 2000; Schetinin & Ma-
ple, 2007). Selection of EEG features has been shown improving the
classification in Yom-Tov and Inbar (2002).

In our previous work (Jakaite & Schetinin, 2008), we attempted
to mitigate the lack of prior information and proposed a new strat-
egy for Bayesian averaging over DT models for predicting trauma
survival. In this case of application, we observed that some screen-
ing tests (namely features) make a weak contribution to the model
outcome and then we found that the DTs exploiting such weak
tests can be discarded without affecting the accuracy of estimating
the full class posterior distribution. In practice, it is important to
reduce the number of features without an increase in the classifi-
cation uncertainty, and the proposed method has been shown able
to do achieve that.

The above findings motivated us to explore the discarding strat-
egy in case of Bayesian assessment of newborn brain maturity from
sleep EEG being represented by spectral power and statistical fea-
tures. The importance of these features has not been explored yet
in detail for a particular classification model such as DT. We will
expect that the posterior information on EEG features will be effec-
tively used within this strategy and the ensemble of DTs will be re-
fined by discarding those models which exploit weak features.
Similarly to the results obtained in our previous research, we will
expect that the proposed strategy will reduce a portion of over-
sized DT models in the ensemble and the uncertainty in assess-
ment will be decreased (Jakaite & Schetinin, 2008; Jakaite,
Schetinin, & Maple, 2008).

Bayesian averaging over classification models is known as a the-
oretical methodology of achieving most accurate estimation of
class posterior distribution. The estimate is calculated by integra-
tion of the posterior distribution over model parameters by using
a stochastic integration known as Markov Chain Monte Carlo
(MCMC) integration. The use of the Bayesian methodology allows
experts to obtain the exhaustive information on uncertainty or
risks in EEG assessment of newborn’s brain. Therefore, the shape
of the distribution becomes important for estimating the uncer-
tainty in EEG assessment.

As part of this research, we will explore the shape of the class
posterior distribution counted for a given PCA over DT models to an-
swer the question whether a mismatch between the EEG estimate
and PCA of the newborn causes a significant change in the shape.
We assume that when PCA matches EEG estimate, the distribution
shape tends to be symmetrical as the areas of interests are mainly
located around one age category. On the contrary, for the mismatch-
ing cases the distribution becomes rather asymmetrical as the areas
of interests are spread over different age categories. We will test our
assumption on the EEG data to answer this question.

Overall, we expect to achieve the accuracy of the Bayesian
assessment of brain maturity comparable to that obtained by ex-
perts. The accurate estimation of class posterior distribution pro-
vided by the Bayesian methodology will allow experts to obtain
the exhaustive information on risk in EEG assessment of the new-
born’s brain maturity. The use of DT models which are transparent
for users will allow EEG experts make new finding in the neurolog-
ical assessment of newborn brain.

2. Problem statement

Typically, EEG experts assess the newborn brain maturity in
terms of PCA measured in weeks. Most experts agreed that the phys-
iological ages of newborns are known in the range ±2 weeks post
conception. The weeks of PCA are most often counted on the base
of information obtained from a questionnaire of the mother. Ultra-
sound dating has been shown more accurate than that and normally
undertaken on the first and second triple-months. The dates are typ-
ically replaced by the ultrasound estimates if the difference exceeds
±1 week in the first triple and ±2 weeks, in the second triple (Hoff-
man et al., 2008).

The newborn EEGs are typically recorded via the standard
C3T3-C4T4 electrodes during a few sleeping hours. In our case,
the EEG recordings have been made by the polysomnograph Alice
3 with a sampling rate 100 Hz. The raw data have been then pro-
cessed with the Fast Fourier Transform over each 6-s epochs to
be represented by the standard spectral power bands: Subdelta
(0–1.5 Hz), Delta (1.5–3.5 Hz), Theta (3.5–7.5), Alpha (7.5–13.5),
Beta 1 (13.5–19.5 Hz), and Beta 2 (19.5–25 Hz).

For our experiments, the EEG features have been made consist-
ing of two groups, basis and extension ones. The features of the ba-
sis group represent the relative and absolute values of the above
six spectral power bands calculated for the two electrodes and
their sum, making them 36. The features of the extension group
represent the non-stationarity of an EEG recording estimated with
our technique as shown in Jakaite, Schetinin, and Schult (2011).
This technique estimates the distribution of the pseudo-stationary
intervals in EEG. Using this technique, we made the extension
group of features including the segment rate and 10 bins of the dis-
tribution histogram of the intervals ranging from 2-s to 20-s. These
EEG features represent the information in the time domain. In par-
ticular, using the combined time and frequency EEG features has
been shown improving the classification of EEG (Iscan, Dokur, &
Demiralp, 2011). Finally, we added the ratio of slow-to-fast activi-
ties counted as the ratio of absolute spectral powers in Theta and
Alpha bands, increasing the number of features in this group to 12.

The two feature groups together include 48 EEG features repre-
senting the EEG epochs. For our experiments, each EEG recording
has been represented as a vector whose elements are the average
values calculated over all epochs in the EEG recording. This is the
typical way to represent each EEG recording as a vector in a mul-
tidimensional input space.

Note that although the above 48 features have been thought
most informative for our experiments, we cannot state that there
exists the prior information about the importance of either each
feature or a feature combination considered within the given clas-
sification model. Therefore, using DT models for the Bayesian clas-
sification, we would explore the relative importance of the given
EEG features and provide experts with the additional information
about feature importance.

As mentioned in Section 1, in the absence of the prior informa-
tion, the results of Bayesian classification will likely suffer from
disproportionally sampling the posterior distribution, as we cannot
expect that a multidimensional model space will be explored in de-
tail, and the areas of interest will be properly explored within a
reasonable time.
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