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Web maps have become an important decision making tool for our daily lives. We propose a flexible Web
Map segmentation method in order to better use them for decision makings. We extend the distance
transform algorithm to include complex primitives (point, line and area), Minkowski metrics, different
weights and obstacles. The algorithms and proof are explained thoroughly and illustrated. Efficiency
and error for the novel algorithms are also detailed. Finally, the usefulness of the algorithms is demon-
strated through a series of real-life case studies.
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1. Introduction

All the challenges of the modern world, from global warming,
economic downturns and spread of disease, to deployment of
emergency services are related to human activities, and to confront
them, we must understand, analyze and discover the ever changing
patterns of human activities. All these challenges have a geospatial
dimension, but more importantly, they are leaving more and more
trails of data as the world turns digital and the Web takes a more
prevalent role as the infrastructure for all sorts of commercial,
industrial and political activities. There is a great opportunity to
exploit the large traces of georeferenced human behavior that
now happen on the Web and our ability to record them. Moreover,
the turn to the Web 2.0, the Web as a platform, with massive
geospatial content generated by users suggests even far more
user-oriented data than ever. These every-increasing georefer-
enced Web datasets are further fueled by various Web maps from
Web Map Service (WMS) such as Google Map (http://maps.google.
com), Google Earth (http://earth.google.com), and Open Street Map
(http://www.openstreetmap.org). Could this huge repository of
geospatial information along with Web maps be analyzed in terms
that space becomes informative for gaining insights into the
patterns of those users? One of the main obstacles that hinders
exploration of these georeferenced Web datasets is the deficiency
of topological relationship within datasets. Many interesting
topological patterns, such as a hospital having a university in its
vicinity tends to attract more patients, cannot be detected with
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raw georeferenced data. Topology building for georeferenced
Web data must be preceded for more enriched geospatial data
mining. Segmentation is one approach to build toplogy (Chen,
Wang, & Feng, 2010; Hanafizadeh & Mirzazadeh, 2011; Seng &
Lai, 2010). The Voronoi diagram (VD) is a popular model to capture
natural territories of events (districting, segmentation and tessella-
tion) (Gold, 1991). It tessellates the space and models estimates of
the service areas, and captures impact areas of a certain target. It
has been widely used in various geoinformatics applications (Oka-
be, Boots, Sugihara, & Chiu, 2000). The problem with current dis-
tricting techniques with Voronoi diagrams is their lack of
generalizations. Namely, their lack of support representing real
world elements which can consist of points, lines, areas and obsta-
cles - all with their own significance. Increased accuracy on geo-
spatial and temporal dimensions on data can lead to increased
accuracy on the patterns produced by geospatial data mining tech-
niques. This accuracy to the real world patterns can then possibly
lead to new knowledge discoveries. Generalized Voronoi diagrams
(GVDs) are generalizations of the ordinary VD to various metrics,
different weights, higher order, in the presence of obstacles, and
complex data types (point, line and area). Due to the computa-
tional difficulty and complexity, vector GVDs have attracted
less attention in the literature (Lee & Lee, 2009; Mu, 2004; Okabe
et al., 2000).

This paper describes the project dedicated to engineering
efficient and effective GVD algorithms for use in geographic
knowledge discovery (GKD) from GeoWeb process, which aims to
capture new knowledge from spatially referenced data retrieved
from distributed Web 2.0 technologies. The GKD from GeoWeb
process is summarized in Fig. 1, with the blue highlighted areas
describing the contents of this paper. In this paper, we propose
novel GVD algorithms that support:
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Fig. 1. The GKD from GeoWeb model. The blue highlighted area shows the focus of this paper. (For interpretation of the references to colour in this figure legend, the reader is

referred to the Web version of this article.)

e Ordinary (modeling normal distriction).

e Weighted (modeling different significance).

e Various metrics (modeling various geographic areas).
e Point, line and polygon primitives of interest.

e Line and polygon obstacles.

e Any combination of these generalized cases.

The proposed algorithms are designed to be as efficient and
flexible as possible because of the potential massive geospatial
datasets that they will need to generate topological information
for. Voronoi diagram algorithms have traditionally been designed
as vector-based which have efficient time complexities at the ex-
pense of a lack of diversity. This encompasses generators being
typically limited to points, the underlying metric limited to the
Euclidean metric and weights of generators assumed to be invari-
ant. However, our project aims to accurately produce topological
maps and therefore requires a different approach. The need for a
robust and versatile method with the ability to accurately model
the diverse and various components associated with real world
geospatial analysis has been gaining popularity in the scientific
community. This has lead to the exploration of efficient raster-
based methods for GVD.

This paper introduces a flexible sequential-scan based district-
ing algorithms extended from the distance transform algorithm
(Shih & Wu, 2004). It proposes a three-scan algorithm capable of
handling generators of complex primitives (point, line and area),
Minkowski metrics and obstacles in O(F) time, where F is the num-
ber of pixels. Primitives with weights and obstacles can be handled
in the plane in O(F x G) time, where G is the set of generators.

This paper is structured as follows. Section 2 introduces the
properties of Voronoi diagrams. Section 3 introduces distance
transforms and districting algorithms. Section 4 describes our
three-scan propagated relative distance algorithm for weighted
primitives. Section 4.2 extends the algorithm for use with obsta-
cles. Section 5.1 defines a proof of the basis of the algorithms. Sec-
tion 5.2 looks into the average error produced by the algorithms.
Section 5.3 shows average performance of the algorithms. Section
6 introduces case studies and possible applications for the algo-
rithms. Finally, Section 7 concludes the paper with an overview
of the project and future considerations.

2. Voronoi diagram districting

Let P={pq,p2,...,px} be a set of generator points of interest in
the plane in R™ space. For any point p in the plane, dist(p,p;) de-
notes the distance from point p to a generator point p;. The distance
metric can be of Manhattan, Chessboard, Euclidean or another
metric and the resulting dominance region of p; over p; can be de-
fined as:

dom(p;,p;) = {p|dist(p,p;) < dist(p,p;)}. )

For the generator point p;, the Voronoi region of p; can be defined
by:

V(p;) = Nj=idom(p;, p;)- (2)

The partition into subsequent Voronoi regions V(p),V(p2),...,
W(py) is called the generalized Voronoi diagram. The bounding re-
gions of V(p;) are known Voronoi boundaries and depending on
the primitive used as the generator, such as points, lines or poly-
gons and the metric space used, will result in a series of polygons
and arcs made up of lines and Bezier curves. These geospatial dom-
inance regions provide natural neighbor relations that are crucial
for many topological queries in geospatial modeling and analysis.
The most popular distance metric dist is the Euclidean distance,
which is an instance of the Minkowski metric. However, in urban
geography the Manhattan distance metric, another instance of
the Minkowski metric, better approximates real world situations
(Krause, 1975). The Minkowski distance is described below:

m 1/n
dLy(p. &) = [Z | xfj|"} (1<n< ), 3)
j=1

where (x1,X2,...,Xy) and (Xi1,Xi,...,Xim) are the Cartesian coordi-
nates of p and p;, respectively. The parameter n can be in the range
of 1 < n < oo. Different values of n give different distance metrics.
Different distance metrics influence Voronoi diagrams by changing
the Voronoi boundaries that make up each dominance region.
When n =1, then dL(p,p;) = Z}L |x; — x;;| is the Manhattan metric.
The Minkowski metric becomes the Euclidean metric when n = 2.
If n = oo, then the Minkowski metric becomes dL..(p,p;) = max;|x; —
X;j|, which is called the chessboard metric.
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