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a b s t r a c t

The proper generation of fuzzy membership function is of fundamental importance in fuzzy applications.
The effectiveness of the membership functions in pattern classifications can be objectively measured in
terms of interpretability and classification accuracy in the conformity of the decision boundaries to the
inherent probabilistic decision boundaries of the training data. This paper presents the Supervised Pseudo
Self-Evolving Cerebellar (SPSEC) algorithm that is bio-inspired from the two-stage development process
of the human nervous system whereby the basic architecture are first laid out without any activity-
dependent processes and then refined in activity-dependent ways. SPSEC first constructs a cerebellar-like
structure in which neurons with high trophic factors evolves to form membership functions that relate
intimately to the probability distributions of the data and concomitantly reconcile with defined semantic
properties of linguistic variables. The experimental result of using SPSEC to generate fuzzy membership
functions is reported and compared with a selection of algorithms using a publicly available UCI Sonar
dataset to illustrate its effectiveness.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The generation of membership function is an important step in
many applications of fuzzy theory (Medasani, Kim, & Krishnapu-
ram, 1998). Most common membership functions are triangular,
trapezoidal, Gaussian and bell-shaped (Mendel, 2001; Zenebe &
Norcio, 2009; Zhou & Khotanzad, 2007). Fig. 1(a) and (b) depict
trapezoidal and Gaussian membership functions, mathematically
described by Eqs. (1) and (2) respectively. Triangular and bell-
shaped membership functions can be described by Eq. (1) using
parameters such that b = c and by Eq. (2) using parameters such
that a = c and b = d, respectively.
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where a, b, c, d are parameters of the membership function.
Although fuzzy membership functions can be mathematically

described using Eqs. (1) and (2), there is no uniformity in the inter-
pretation of what a fuzzy membership grade means. Three main
semantics for membership functions exist in the literature;
namely, similarity, preference and uncertainty (Dubois & Prade,
1997). Considering the degree of membership lF(u) of an element
u in a fuzzy set F defined on the universe U, the three interpreta-
tions of this degree are:

� Similarity – is the proximity of u to a prototype element F (Bell-
man, Kalaba, & Zadeh, 1966). If u is exactly F then lF(u) is 1.
� Preference – is the preference in favor of selecting u where F rep-

resents a set of preferred objects (Bellman & Zadeh, 1970).
� Uncertainty – is the plausibility that a parameter x has value u,

given that x is F. This was proposed in (Zadeh, 1978) when pos-
sibility theory and approximate reasoning were introduced.

In addition, there are no measures available to evaluate the
goodness or correctness of the membership functions generated
(Medasani et al., 1998). As a result, there are several approaches
to the generation of fuzzy membership functions:

� Heuristics – uses predefined membership functions where asso-
ciated parameters are provided by human experts. This
approach yields reasonably smooth membership functions that
are easily manipulated by fuzzy operators, but the parameters
have to be manually optimized (Medasani et al., 1998).
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� Histograms – provides information for estimating the probabil-
ity distributions of the data, which can be represented by
parameterized functions such as Gaussian, thus directly yield-
ing membership functions. This approach is easy to implement
and the membership functions can be used for classifying data
(Medasani et al., 1998), but the histograms of different classes
frequently overlap, hence limiting the applicability for finding
linguistic terms (Duch, Setiono, & Zurada, 2004). Moreover,
the randomness represented by probability theory and the
vagueness represented by fuzzy set theory are inherently differ-
ent concepts (Kosko, 1992). Hence, the validation on the inter-
pretation of membership functions generated using this
method remains in question (Medasani et al., 1998).
� Genetic algorithms – performs a global search for useful and suit-

able membership functions (Alcala, Alcala-Fdez, & Herrera,
2007; Alcalá-Fdez, Alcalá, Gacto, & Herrera, 2009; Chen, Hong,
& Tseng, 2009; Hong, Chen, Wu, & Lee, 2006; Huang, Pasquier,
& Quek, 2009). This approach is more complicated as it requires
the specification of the number of membership functions, the
definition of suitability by an objective function, and various
parameters such as how the membership functions are encoded
by a chromosome in the Genetic algorithm.
� Nearest neighbors – assigns class memberships to a sample

instead of a particular class, where the class memberships
depend on the sample’s distance from its k nearest neighbors
(Keller, Gray, & Givens, 1985). This approach is the simplest,
but generates membership functions that are not smooth
(Medasani et al., 1998).
� Feedforward neural networks – employs neurons using sigmoid

activation functions that are equivalent to fuzzy membership
functions that can be easily extracted (Duch, 2005; Medasani
et al., 1998). This approach is capable of generating complex
membership functions for classifying data, but the membership
values are not necessarily indicative of the similarity of a fea-
ture to a class and are unpredictable in regions where there is
no training data (Medasani et al., 1998).
� Clustering – partitions a dataset into subsets called clusters so

that data in each subset are similar. This approach employs
unsupervised self-organization which generates membership
functions that efficiently covers the regions where numerical
data are present (Lin, 1995), but the number of clusters must
be known (Medasani et al., 1998) for example Discrete Clustering
Technique – DCT (Singh, Quek, & Cho, 2008). Although clustering
algorithms such as the Robust Agglomerative Gaussian Mixture
Decomposition (RAGMD) (Medasani et al., 1998), Adaptive Res-
onance Theory (ART) (Carpenter, Grossberg, Markuzon, Rey-
nolds, & Rosen, 1992; Lin & Lin, 1997) and Discrete
Incremental Clustering (Tung & Quek, 2002a) do not require

the specification of the number of clusters, other parameters
that affect the number of clusters generated are required. The
parameters required are, namely, the retention ratio P in RAG-
MD (Medasani et al., 1998); the vigilance criterion q in ART
(Lin & Lin, 1997); and the SLOPE and STEP in DIC (Tung & Quek,
2002a).
� Probability to possibility transformations – employs the possibil-

ity/probability consistency principle (Zadeh, 1978) to convert
probability distribution function to possibility distribution func-
tion. This principle expresses a weak connection between possi-
bility and probability where a fuzzy variable is associated with a
possibility distribution represented by a membership in the same
manner as a random variable is associated with a probability dis-
tribution. This approach assumes that the general shapes of the
probability functions and possibility functions are similar and
thus facilitates the generation of membership functions directly
from normalized histograms (Medasani et al., 1998). Therefore,
the validation on the interpretation of membership functions
generated using this method, which is similar to the histogram
method, remains in question (Medasani et al., 1998).

Due to the number of different approaches available in the liter-
ature, it is difficult to choose a single approach of generating mem-
bership functions that works for most applications (Medasani
et al., 1998). However, the clustering method is popularly used to
generate membership functions (Nedjah & Mourelle, 2005; Panella
& Gallo, 2005; Tung & Quek, 2002b). For example, the Learning
Vector Quantization algorithm (Kohonen, 1989) is popularly em-
ployed in Mamdani Fuzzy models (Ang, Quek, & Pasquier, 2003;
Lin, 1995; Quek & Singh 2005; Zhou & Quek, 1996), and the Fuzzy
C-Means algorithm (Bezdek, 1981) is popularly employed in TSK
Fuzzy models (Flores-Sintas, Cadenas, & Martin, 1999; Li, Mukaid-
ono, & Turksen, 2002; Panella & Gallo, 2005). Bijective transform
(Dubois & Prade, 1983), which is based on the probability to possi-
bility transform approach, has also gained interest in recent year
(Masson & Denoeux, 2006). For a review on membership genera-
tion techniques, please refer to (Medasani et al., 1998).

Since the main advantage of using fuzzy applications is to ab-
stract humanly interpretable linguistic expressions from available
numerical data, the membership functions generated have to rec-
oncile with the semantic properties of a linguistic variable (Casi-
llas, Cordón, Herrera, & Magdalena, 2003). A linguistic variable is
formally defined (Zadeh, 1975) with a quintuple (L, T(L), U, G, M)
where L is the name of the variable; T(L) is the linguistic term set
of L; U is a universe of discourse; G is a syntactic rule that generates
T(L); and M is a semantic rule that associates each T(L) with its
meaning. Each linguistic term is characterized by a fuzzy set that
is described mathematically using a membership function.
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Fig. 1. (a) Trapezoidal membership function lT(x; 3, 4, 6, 8) and (b) Gaussian fuzzy membership functions lG(x; 0.5, 4, 1, 6).
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