
Speedup of color palette indexing in self-organization of Kohonen feature map

Kuo-Liang Chung a,1, Yong-Huai Huang b,⇑,2, Jyun-Pin Wang a,b, Ming-Shao Cheng a,b

a Department of Computer Science and Information Engineering, National Taiwan University of Science and Technology, No. 43, Section 4, Keelung Road, Taipei 10672, Taiwan, ROC
b Institute of Computer and Communication Engineering, Department of Electronic Engineering, Jinwen University of Science and Technology, No. 99, An-Chung Road,
Hsin-Tien Dist., New Taipei City 23154, Taiwan, ROC

a r t i c l e i n f o

Keywords:
Color palette indexing
Learning process
Lookup table
SOFM
Speedup

a b s t r a c t

Based on the self-organization of Kohonen feature map (SOFM), recently, Pei et al. presented an efficient
color palette indexing method to construct a color table for compression. Taking the palette indexing
method as a representative, this paper presents two new strategies, the pruning-based search strategy
and the lookup table (LUT)-based update strategy, to speed up the learning process in the SOFM. Based
on four typical testing images, experimental results illustrate that our proposed two strategies have 35%
execution-time improvement ratio in average. The practical improvement ratio is very close to that in the
theoretical analysis.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

In order to achieve good compression performance by using im-
age compression standards, such as JPEG-LS (Information Technol-
ogy, 1999; Weinberger, Seroussi, & Sapiro, 2000), JPEG-2000 (JPEG,
2000; Skodras, Christopoulos, & Ebrahimi, 2001), and PNG (Roleof,
2003), how to design a good color palette table is an important is-
sue. In 1981, Kohonen presented a pioneer work, self-organization
of Kohonen feature map (SOFM) (Kohonen, 1981), which is a pow-
erful unsupervised neuron learning model. The SOFM has been
studied extensively in the applications such as color quantization
(Pei & Lo, 1998), color palette indexing design (Pei, Chuang, &
Chuang, 2006), vector quantization (Cho, Paiva, Kim, Sanchez,
& Príncipe, 2007; Laha, Pal, & Chanda, 2004), clustering (Hsu &
Halgamuge, 2008; Hsieh, Jeng, Yang, Chen, & Lin, 2007; Hu, Chen,
Hsu, & Tzeng, 2002; Pandya & Macy, 1995; Ritteer, Martinez, &
Schulten, 1992; Zhang, Chai, & Yang, 2010), data mining, pattern
recognition (Ripley, 1996), graph processing (Hagenbuchner,
Sperduti, & Tsoi, 2009), feature selection (Huang & Tsai, 2009),
and so on. Recently, Pei et al. presented an efficient SOFM-based
color palette indexing method (Pei et al., 2006) for JPEG-LS and
JPEG2000. Based on the constructed color palette table, some pal-
ette re-indexing methods (Memon, Venkateswaran, & Stanco,
1996; Pinho & Neves, 2004; Zeng, Li, & Lei, 2001) have been devel-
oped in order to improve the compression performance further.

In this paper, we take Pei et al.’s color palette indexing method
(Pei et al., 2006) as the representative to point out two computa-
tional bottlenecks existed in the SOFM. In order to relax the two
bottlenecks, for each training vector, we first present a pruning-
based search strategy to speed up the process for finding the win-
ning neuron in each iteration; further, a lookup table (LUT) strategy
is presented to speed up the lateral update interaction between the
winning neuron and its neighboring neurons. Based on four typical
testing images, experimental results illustrate that our proposed
two strategies have 35% execution-time improvement ratio in
average while preserving the same result as in the SOFM. The prac-
tical improvement ratio is very close to that in the theoretical anal-
ysis. Precisely speaking, the first strategy has 19% execution-time
improvement ratio; the second strategy has 16% execution-time
improvement ratio. In fact, our proposed two strategies could be
used to speed up the other SOFM-based learning processes in dif-
ferent applications.

The rest of this paper is organized as follows: In Section 2, the
two computational bottlenecks existed in the learning process of
Pei et al.’s method is introduced. In Section 3, our proposed faster
learning process is presented. In Section 4, some experimental re-
sults are demonstrated. Some concluding remarks are addressed in
Section 5.

2. The palette indexing method by Pei et al. and two
computational bottlenecks

In this section, we first introduce the palette indexing method
by Pei et al. (2006), and then we point out two computational bot-
tlenecks in the SOFM-based learning model. A full color image usu-
ally has 24 bits, each color channel with 8 bits. The goal of color
palette indexing method is to construct a color palette table such

0957-4174/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2011.08.092

⇑ Corresponding author.
E-mail addresses: k.l.chung@mail.ntust.edu.tw (K.-L. Chung), yonghuai@ms28.

hinet.net (Y.-H. Huang).
1 Supported by the National Science Council of ROC under contract NSC99-2221-

E011-078-MY3.
2 Supported by the National Science Council of ROC under contract 99-2221-E-228-

006.

Expert Systems with Applications 39 (2012) 2427–2432

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2011.08.092
mailto:k.l.chung@mail.ntust.edu.tw
mailto:yonghuai@ms28.hinet.net
mailto:yonghuai@ms28.hinet.net
http://dx.doi.org/10.1016/j.eswa.2011.08.092
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


that the input color image can be converted to an indexed image.
In essence, the indexed image associated with the palette table
constitutes the quantized color image. Pei et al.’s method has been
shown to have good compression performance.

2.1. SOFM-based learning model

As shown in Fig. 1, the 1-D SOFM used in Pei et al.’s method has
two layers, namely the input layer and the output layer. The output
layer has N neurons, u1, u2, . . ., and uN; the initial triple weight of
the ith neuron ui in the neural network, 1 6 i 6 N, is set to

li ¼ ½rið0Þ; gið0Þ; bið0Þ�T

¼ ½ði� 1Þ � 256=N; ði� 1Þ � 256=N; ði� 1Þ � 256=N�T ; ð1Þ

where ri(0), gi(0), and bi(0) indicate the red value, green value, and
blue value at the 0th iteration, i.e. at the initial iteration in the ith
neuron; ‘256’ indicates the maximal allowable number of indices
in the palette. From the input layer, we feed each pixel x = [rx,gx,bx]T

in the input color image as the training vector into the SOFM for
training a good color palette table.

In the training process of the SOFM, M training vectors are re-
quired in each sweep. In order to maximize the randomness of
the input training vectors, avoid biased training, and avoid some
clusters being overtrained during the training process, Pei et al.
presented an effective butterfly-jumping sequence to generate
the input training vectors for each training sweep. Based on the
butterfly-jumping sequence, all pixels in the W � H input image
is separated into W�H

M training sets S1, S2, . . ., and SW�H
M

. Each set con-
tains M training vector to be used in a training sweep.

For the mth training sweep, 1 6 m 6 W�H
M , each training vector x

in Sm is fed into the SOFM to search the best matched neuron uc,
1 6 c 6 N, i.e. the winning neuron, in the output layer based on
the following square Euclidean distance function:

c ¼ arg min
16i6N

kx� lik
2

¼ arg min
16i6N

½ðrx � riÞ2 þ ðgx � giÞ
2 þ ðbx � biÞ2�: ð2Þ

Based on the input vector x and the winning neuron uc with weight
lc = [rc,gc,bc]T, the output layer therefore updates the weight of the
winning neuron and simultaneously performs the lateral update
interaction between the winning neuron uc and its neighboring
neurons by the following learning function:

liðm;nþ1Þ¼
liðm;nÞþaðmÞ �gði;c;rðmÞÞ � ½x�liðm;nÞ�;

if ji�cj6 brðmÞc;
liðm;nÞ; otherwise;

8><
>: ð3Þ

where m and n denotes the sweep number and the iteration num-
ber, respectively; g(i,c,r(m)) is the neighboring function providing
the lateral interaction between ui and uc; r(m) and a(m) denote
the width of neighboring function and scalar gain function used
in the mth sweep, respectively. g(i,c,r(m)), r(m), and a(m) are
defined by

gði; c;rðmÞÞ ¼ expð�ji� cj2=r2ðmÞÞ; ð4Þ
rðmÞ ¼ rð0Þ � km

1 ; and ð5Þ
aðmÞ ¼ að0Þ � km

2 ; ð6Þ

respectively, where k1 and k2 are set to values in [0.8,0.99]. By Eqs.
(5) and (6), r(m) and a(m) are decreasing functions in terms of
sweep number m. r(0) is set to a value in [1,10] and a(0) is set to
a value less than one initially. In our implementation, we set
r(0) = 10, a(0) = 0.1, k1 = 0.8, and k2 = 0.8 initially.

After updating the weights of neurons in the output layer, the
next training vector in Sm will be fed into the SOFM to search the
best matched neuron by Eq. (2) and update the weights of relevant
neurons by Eq. (3). The above training process is performed itera-
tively until a(m) becomes small enough. The stopping rule of the
learning process is set to that if the condition a(m) 6 4.05648 �
10�5 is held in the mth sweep. From the stopping rule, we find that
the number of sweeps Ns can be set to 35 since a(35) satisfies the
stopping rule.

2.2. Two computational bottlenecks

From the description in last subsection, we now point out two
concerned computational bottlenecks. The first computational bot-
tleneck occurs in the process for searching the winning neuron. In
each sweep, we have M training vectors and for each training vec-
tor, Eq. (2) is performed to calculate N square Euclidean distances
to select the minimal one, and then determine the winning neuron.
In Eq. (2), it needs three subtractions, two additions, and three
square operations for calculating each square Euclidean distance
and from the N calculated Euclidean distances, N � 1 comparisons
are required to find the winning neuron with minimal Euclidean
distance. Overall, each sweep needs to calculate Eq. (2) M times.
Let Tadd, Tsub, Tsq, and Tcmp denote the time required to perform
one addition, one subtraction, one square operation, and one com-
parison, respectively. From the state of the art in VLSI technology,
one addition, one subtraction, and one square operation can be
performed using almost the same time. Therefore, we can use Tadd

to represent each one of Tsub and Tsq due to Tadd ffi Tsub ffi Tsq. Fur-
ther, one comparison is composed of one subtraction and one sign
test. Thus, we assume Tcmp = 2Tadd for convenience. By setting the
number of sweeps performed in the SOFM to be 35, i.e. Ns = 35,
we have the following proposition.

Proposition 1. For each training vector, finding the winning neuron
takes TW = (10N � 2) � Tadd (=N � (3Tsub + 2Tadd + 3Tsq) + (N � 1) � T
cmp) time. For each sweep, it takes M � TW time to find M winning
neurons. For an input color image, it takes TI

W ¼ Ns �M � TW time to
find all winning neurons. For the case Ns = 35, we have TI

W ¼
ð350MN � 70MÞ � Tadd.

Proposition 1 indicates the first computational bottleneck in the
SOFM-based palette indexing method. Therefore, reducing the
computational effort required in finding winning neurons is an
important issue and it leads to the first motivation of our research.
In Section 3.1, an efficient pruning-based search strategy will be
presented to speed up the process for finding the winning neuron
in each iteration.

The second computational bottleneck occurs in the process for
updating the weights of winning neuron and its neighbors. For
each determined winning neuron, (2br(m)c + 1) neurons must be
updated by Eq. (3) where b�c denotes the floor operation. From
Eq. (3), it needs three additions and four multiplications to sum
up the four terms li(m,n), [x � li(m,n)], g(i,c,r(m)), and a(m);
the term [x � li(m,n)] needs three subtractions; the neighboring
function g(i,c,r(m)) defined in Eq. (4) needs one subtraction, one

2 3 N1

xbxgxr

Fig. 1. The used 1-D SOFM.

2428 K.-L. Chung et al. / Expert Systems with Applications 39 (2012) 2427–2432



Download English Version:

https://daneshyari.com/en/article/10322490

Download Persian Version:

https://daneshyari.com/article/10322490

Daneshyari.com

https://daneshyari.com/en/article/10322490
https://daneshyari.com/article/10322490
https://daneshyari.com

