
A knowledge-based object modeling advisor for developing quality object models

Narasimha Bolloju a,⇑, Vijayan Sugumaran b,c

a Department of Information Systems, City University of Hong Kong, Hong Kong
b School of Business Administration, Oakland University, Rochester, MI, USA
c Department of Service Systems Management and Engineering, Sogang Business School, Sogang University, Seoul 121-742, Republic of Korea

a r t i c l e i n f o

Keywords:
Class diagrams
Knowledge-based system
Model quality
Object modeling

a b s t r a c t

Object models or class diagrams are widely used for capturing information system requirements in terms
of classes with attributes and operations, and relationships among those classes. Although numerous
guidelines are available for object modeling as part of requirements modeling, developing quality object
models has always been considered a challenging task, especially for novice systems analysts in business
environments. This paper presents an approach that can be used to support the development of quality
object models. The approach is implemented as a knowledge-based system extension to an open source
CASE tool to offer recommendations for improving the quality of object models. The knowledge compo-
nent of this system incorporates an ontology of quality problems that is based on a conceptual model
quality framework commonly found in object models, the findings of related empirical studies, and a
set of analysis patterns. The results obtained from an empirical evaluation of the prototype demonstrate
the utility of this system, especially with respect to recommendations related to the model completeness
aspect of semantic quality.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Systems analysts use conceptual modeling techniques during the
analysis phase of information systems development to capture sys-
tems requirements. These requirements are represented using arti-
facts such as use case diagrams and descriptions, class diagrams,
entity-relationship diagrams, and activity diagrams during the ini-
tial phases of the systems development life cycle. Many of these arti-
facts facilitate communication among stakeholders and system
developers in defining, documenting and confirming system
requirements. The cost and level of effort required to fix any errors
in requirement specifications detected in the later phases of systems
development can be extremely high (Boehm, 1981). Thus, the over-
all quality of conceptual models created in the early phases of sys-
tems development contributes significantly to the success of the
system developed.

When developing conceptual models, novice or inexperienced
systems analysts encounter difficulties in the areas of domain-spe-
cific knowledge, problem-structuring, and the cognitive process
(Schenk, Vitalari, & Davis, 1998). A lack of understanding of domain
knowledge among requirement engineers or systems analysts and

miscommunication between users and technical personnel are
two problems commonly associated with the early stages of systems
development (de la Vara & Sánchez, 2008). The effectiveness of a
conceptual model is affected by the complex relationships that exist
between modeling constructs, task requirements, the analyst’s
modeling experience and cognitive abilities, and the interpreter’s
prior exposure to conceptual models (Wand & Weber, 2002).
Although numerous guidelines on the development of quality con-
ceptual models are available, novice analysts typically fail to benefit
from such assistance due to their limited domain knowledge and
modeling experience. Furthermore, the absence of standardized val-
idation procedures makes conceptual modeling a complex task for
novice analysts to perform efficiently and effectively (Shanks, Tans-
ley, & Weber, 2003).

In recent years, Unified Modeling Language (UML) techniques
(OMG, 2005) such as use case models and domain models (also
known as object models) have been widely used for conceptual
modeling in object-oriented systems development (Dobing &
Parsons, 2006). However, researchers and practitioners criticize
UML for its complexity and limited usability. For example, Siau
and Cao (2001) evaluate the complexity of UML with respect to
other modeling methods by using a set of structural metrics and
found that UML is two to eleven times more complex than other
modeling techniques, and that object models are the most complex
of the UML artifacts to use. Though object models are considered
extremely useful in supporting activities such as client verification,

0957-4174/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2011.08.151

⇑ Corresponding author. Address: Tat Chee Avenue, Kowloon Tong, Hong Kong.
Tel.: +852 34427545; fax: +852 34420370.

E-mail addresses: narsi.bolloju@cityu.edu.hk (N. Bolloju), sugumara@oakland
.edu (V. Sugumaran).

Expert Systems with Applications 39 (2012) 2893–2906

Contents lists available at SciVerse ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://dx.doi.org/10.1016/j.eswa.2011.08.151
mailto:narsi.bolloju@cityu.edu.hk
mailto:sugumara@oakland.edu
mailto:sugumara@oakland.edu
http://dx.doi.org/10.1016/j.eswa.2011.08.151
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


clarifying technical understanding, programmer specifications, and
maintenance documentation, even experienced analysts may not
be using these models due to lack of understanding of this UML
component (Dobing & Parsons, 2006). Novice analysts, in particu-
lar, have to overcome not only the steep learning curve associated
with mastering object modeling techniques, but also the challenge
of applying UML.

Considering the importance of object models (i.e., class dia-
grams) to systems development and the difficulties associated with
the object modeling process, the need to support systems analysts
should not be underestimated. Although typical computer-aided
software engineering (CASE) tools include functionalities such as
those enabling users to draw, document, and navigate among differ-
ent models (Eriksson, Penker, Lyons, & Fado, 2004), they seldom of-
fer capabilities that support the creation of high-quality object
models. Recent years have seen several attempts to enhance the
support provided in requirements modeling (e.g., Eshuis, 2006;
Popescu, Rugaber, Medvidovic, & Berry, 2008; Shoval, Last, & Yam-
polsky, 2009). Novel extensions aimed at addressing this aspect of
support are expected to not only contribute to the efficiency and
effectiveness of the object modeling process, but also to help in
shortening the learning process for novice analysts. Thus, the objec-
tives of this study are to: (a) develop a knowledge-based approach
that can be used to support the creation of quality UML object mod-
els; (b) implement this approach in a prototype as an extension to an
existing CASE tool; and (c) demonstrate the usefulness of the
prototype.

This paper presents the details of the proposed approach that
exploits pattern knowledge for object model development, the
implementation and evaluation of a knowledge-based system
extension to an open source CASE tool. This extension will assist
novice systems analysts in the important requirements capturing
process task of developing quality object models. The applicable
knowledge for this study is drawn from the conceptual model
quality framework (Lindland, Sindre, & Solvberg, 1994) and collab-
oration patterns (Nicola, Mayfield, & Abney, 2001). The prototype
system is evaluated by focusing on its utility of the recommenda-
tions provided. This study contributes to the extant literature by
proposing a knowledge-based approach that combines a widely
used conceptual model framework with a set of analysis patterns
related to the business domain and by implementing it in an open
source CASE tool to support the development of quality object
models.

The rest of this paper is organized as follows. Section 2 reviews
a widely used conceptual model quality framework and discusses
three broad categories of approaches currently available for sup-
porting the object modeling process. Section 3 presents an over-
view of the proposed approach and offers an example. Section 4
discusses the architecture and implementation of a knowledge-
based system called the object modeling advisor (OMA) that is
implemented as an extension to an open source CASE tool. Section
5 reports the results of an empirical evaluation of the extended
functionality. After discussing the findings and limitations of this
study and assessing its implications for research and practice in
Section 6, the paper concludes by highlighting the contributions
made to the existing literature.

2. Background

This section briefly reviews the conceptual model quality
framework proposed by Lindland et al. (1994) and its suitability
for the evaluation of object model quality. It also discusses the typ-
ical capabilities of current UML model checking tools and elabo-
rates on three broad, but not distinct, categories of approaches
available for supporting the object modeling process.

2.1. Quality of object models

The object modeling process involves the identification of clas-
ses, the attributes and operations of such classes, and the relation-
ships among classes in the problem domain of interest. The
resulting object models are graphically depicted as class diagrams.
Object models have a relatively long history of use in both ob-
ject-oriented programming and systems development (Siau, Erick-
son, & Lee, 2005) and are considered to be the most useful models
in clarifying and understanding the static structure of a system
among technical team members (Dobing & Parsons, 2006). How-
ever, the difficulties that arise in identifying required model ele-
ments (classes, attributes, operations, and relationships) often
affect how closely the resulting model reflects the requirements
of the system under consideration.

High quality object models not only adhere to commonly advo-
cated notations and guidelines (e.g., the naming of classes, attri-
butes, and associations; presentation layout for better readability),
but also include required elements from the problem domain (e.g.,
no missing classes, attributes, or relationships; avoid using irrele-
vant classes, attributes, and relationships). Such quality object mod-
els can minimize communication problems and result in better
understanding of model requirements, thereby reducing the effort
required to accommodate such requirements at later stages of sys-
tems development.

Prior research related to conceptual model quality is relevant
for studying the quality of object models. The quality of conceptual
modeling can generally be divided into product and process quality
(Poels, Nelson, Genero, & Piattini, 2003). Product quality is related
to the resulting artifacts (i.e., conceptual models), whereas process
quality relates to the way in which the conceptual model is built.
Among the studies addressing conceptual model quality surveyed
by Wand and Weber (2002), frameworks for conceptual model
quality provide a systematic structure for evaluation. Many quality
criteria and frameworks have been proposed in the literature based
on the desirable properties of data models (Batini, Ceri, & Navathe,
1992; Reingruber & Gregory, 1994). The framework proposed by
Lindland et al. (1994) for evaluating the quality of conceptual mod-
els has gained wider acceptance due to its roots in the semiotic
theory and applications, as reported in several empirical studies
(Bolloju & Leung, 2006; Moody, Sindre, Brasethvik, & Solvberg,
2002; Moody, Sindre, & Brasethvik, 2003; Su & Ilebrekke, 2005).
This quality framework addresses both process and product in
assessing quality and is built on three linguistic concepts: syntax,
semantics, and pragmatics. These concepts are applied to four
aspects of modeling: language, domain, model, and audience
participation.

According to this framework, the syntactic correctness of a
model implies that all statements in the model accord with the
syntax of the language. Syntactic quality captures how a given mod-
el adheres to language rules (i.e., syntax). Therefore, a smaller
number of errors and deviations from the rules indicate better syn-
tactic quality. Semantic quality is described in terms of validity and
completeness goals. The validity goal specifies that all statements
in the model are correct and relevant to the problem domain.
The completeness goal specifies that the model contains all state-
ments about the problem domain that are correct and relevant.
However, it is possible that these two goals, unlike syntactic cor-
rectness, may not be achieved completely. Pragmatic quality ad-
dresses the comprehension aspect of the model from the
stakeholders’ perspective. It captures how the model has been se-
lected from a large number of possible alternatives to express a
single meaning and essentially deals with making the model easy
to understand. The comprehension goal specifies that all audience
members (or interpreters) completely understand the statements
in the model that are relevant to them (i.e., the model projections).

2894 N. Bolloju, V. Sugumaran / Expert Systems with Applications 39 (2012) 2893–2906



Download English Version:

https://daneshyari.com/en/article/10322562

Download Persian Version:

https://daneshyari.com/article/10322562

Daneshyari.com

https://daneshyari.com/en/article/10322562
https://daneshyari.com/article/10322562
https://daneshyari.com

