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a b s t r a c t

Forecasting time series data is one of the most important issues involved in numerous applications in real
life. Time series data have been analyzed in either the time or frequency domains. The objective of this
study is to propose a forecasting method based on wavelet filtering. The proposed method decomposes
the original time series into the trend and variation parts and constructs a separate model for each part.
Simulation and real case studies were conducted to examine the properties of the proposed method
under various scenarios and compare its performance with time series forecasting models without wave-
let filtering. The results from both simulated and real data showed that the proposed method based on
wavelet filtering yielded more accurate results than the models without wavelet filtering in terms of
mean absolute percentage error criterion.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

A time series is a set of observations collected over time (Lai
et al., 2010). The analysis of time series data is one of the most
important areas in statistics in both theory and application. The
main objective of time series analysis is to obtain inherent struc-
tural characteristics, such as autocorrelations, trends, and seasonal
variations, and to use this information to formulate an appropriate
mathematical model for analysis and prediction (Anderson, 1971).
In general, time series data can be analyzed in either the time or
frequency domains. The most widely used methods in analyzing
the time domain include time series regression, decomposition
methods, exponential smoothing, and the Box–Jenkins autoregres-
sive integrated moving average (Li, Gai, Kang, Wu, & Wang, 2014).

Analyses in the frequency domain are usually conducted for
periodic and cyclical observations. The methodologies of the fre-
quency domain are based on Fourier transforms that allow us to
determine the number of frequency components and detect the
dominant cyclic frequency, all of which are embedded in the time
domain. However, Fourier transforms-based methods have limita-
tions in that they require an assumption of stationarity and pro-
duce no information associated with time (Croarkin & Tobias,
2006; Popoola, 2007; Tabak and Feitosa, 2010). Further, Fourier
transforms do not work well in large data, and thus, they can be
implemented only on an interval between 0 and 2p (Tran, 2006).

To address the limitations of Fourier transforms, wavelet trans-
forms that are localized in both the time and frequency domains
(Mallat, 1989) have been proposed (Morettin, 1996, 1997;
Mousa, Munib, & Moussa, 2005; Percival & Walden, 1999;
Priestley, 1996). More specifically, because wavelet basis functions
exist over a finite time limit and are typically irregular and asym-
metric, they are better suited for those time series analyses that
exhibit sharp discontinuities and local behavior (Graps, 1995).

Many prediction approaches based on wavelet transforms have
been developed recently (Chen, 2014; Nguyen, Khosravi,
Creighton, & Nahavandi, 2015). Nguyen et al. (2015) presents a
combination of wavelet features with fuzzy standard additive
model for medical diagnosis. In general, if a time series is non-
stationary, it is difficult to determine a relevant global model. For
example, Hydrological time series forecasting is a difficult task
because of its complicated nonlinear, non-stationary and multi-
scale characteristics (Di, Yang, & Wang, 2014). To overcome this
problem, local models based on wavelet transforms have been pro-
posed (Weigend & Mangeas, 1995; Zhang, Coggins, Jabri, Dersch, &
Flower, 2001). In addition, it is known that wavelet transforms
have the potential to increase the accuracy of time series predic-
tions (Ramsey, 1999; Schlüter & Deuschle, 2010). Once forecasting
models using wavelet transforms succeeded in eliminating noise
before preceding to construct a model (Alrumaih & Al-Fawzan,
2002), improvement in overall forecasting performance followed
(Chou, 2014; Ferbar, Čreslovnik, Mojškerc, & Rajgelj, 2009).

Other approaches that use wavelet transforms estimate compo-
nents in a structural time series model (Arino, 1995; Sang, 2013;
Wong, Wai-Cheung, Zhongjie, & Lui, 2003; Zhang et al., 2001).
Arino (1995) proposed a methodology that used wavelet
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transforms to decompose time series into long-term trends and
seasonal components. Specifically, let y = {yt: t = 1, . . ., T} be a time
series set. y is decomposed into two sets z1 = {z1

t : t = 1, . . ., T} and
z2 = {z2

t : t = 1, . . ., T}, that is, y ¼ z1 þ z2, where z1 and z2, respec-
tively, represent long-term trends and seasonal behavior. Each
component is used to construct an appropriate model, and total
prediction accuracy can be obtained by aggregating the prediction
results from each component model. However, the generalizability
of this method is questionable because Arino’s method considered
only limited cases such as long-term trends and seasonal
variations.

Moreover, some methods applied linear or nonlinear predictive
models to wavelet coefficients (approximation and detail coeffi-
cients) at each level, and the final prediction was obtained by
inverting the predicted wavelet coefficients. Renaud, Starck, and
Murtagh (2002) introduced the multiscale autoregressive models
that use Haar wavelets and scale coefficients during decomposition.
A method that combines nonlinear models with wavelet coeffi-
cients has also been proposed (Chen, Qian, & Meng, 2013; Hadaś-
Dyduch, 2014; Rocha, Paredes, Carvalho, Henriques, & Harris,
2010; Soltani, 2002; Wang, 2014). Chen, Nicolis, and Vidakovic
(2010) classified the wavelet coefficients into trend, seasonal, and
high frequency components and used them to construct forecasting
models based on exponential smoothing, harmonic regression, and
autoregressive moving average with exogenous input (ARMAX)
model. However, these methods involve a high computational load
because they considered each level of a series. Moreover, consider-
ing each level of series could cause an overfitting problem.

In this paper, we propose a forecasting method that uses wave-
let filtering. Through wavelet transforms, the series is partitioned
into two parts (trends and variations). We then construct a sepa-
rate model for each part. By this partitioning, the proposed method
is especially useful for the time series with a large amount of noise.
The potential overfitting problem of this approach caused by using
two separate models is addressed by adjusting the decomposition
levels.

The rest of this paper is organized as follows. In Section 2, we
briefly introduce the basic concept of wavelet transforms. In
Section 3, we present our proposed forecasting approach based
on wavelet filtering. Section 4 presents a simulation study to
examine the properties of the proposed method and evaluate its
performance under various scenarios. Section 4.2 presents the
experimental results from real-life problems. Finally, Section 5
contains our concluding remarks.

2. Wavelet transforms

Wavelets have the advantages of the locality of the analysis and
their ability to handle multiscale information efficiently. Numer-
ous studies of wavelets have been conducted in the fields of sig-
nal/image processing (Meerwald & Uhl, 2001; Prasad & Iyengar,
1997; Rao & Bopardikar, 1998; Subasi, 2007; Avci & Derya, 2008),
statistics (Abramovich, Bailey, & Sapatinas, 2000; Antoniadis,
1999; Vidakovic, 1999), and manufacturing processes (Guo,
Linyan, Gang, & Song, 2008; Jeong, Lu, & Wang, 2006; Jin & Shi,
2001; Lada, Lu, & Wilson, 2002; Saravanan & Ramachandran,
2009). Although Fourier transforms give only the frequency infor-
mation of given data, wavelet transforms can simultaneously deli-
ver both the time and frequency localizations (Mallat, 1989).
Wavelet transforms are conducted from wavelet basis functions
that consist of a scale wavelet part /ðtÞ and a detail part wðtÞ:

/j;kðtÞ ¼ 2j=2/ð2jt � kÞ;

wj;kðtÞ ¼ 2j=2wð2jt � kÞ; ð1Þ

Z
/ðtÞdx ¼ 1

Z
wðtÞdx ¼ 0 /ðtÞ; wðtÞ 2 L2ðRÞ;

where j and k denote, respectively, the scaling parameter and trans-
lation index. L2ðRÞ is the space of square integrable real function
defined on the real line R. The data can be decomposed into the fol-
lowing wavelet series form:

yðtÞ ¼
Xn

k¼1

cj;k /j;kðtÞ þ
XJ

j¼1

Xn

k¼1

dj;k wj;kðtÞ; ð2Þ

where cj;k represents the approximation coefficient at scale j and
location k; J is the decomposition level; dj;k represents the detail
coefficient at scale j and location k; and n is the size of the time ser-
ies data. Reconstruction can also be done through Mallet’s pyramid
algorithm (Burt & Adelson, 1983). Fig. 1 shows an example of the
overall process of decomposition and reconstruction by wavelet
transforms.

In Fig. 1, cj;k represents the coarse approximation (trend and
seasonality) and dj;k represents detailed information (noise or ran-
dom fluctuation). The difference between the first level approxi-
mation coefficients c1;k and original series y yields the detail
coefficients of the first level d1;k: To obtain c2;k; c1;k is approximated
by a set of basis functions. As can be seen from Fig. 1, when the
level becomes higher, cj;k represents the overall pattern of the ori-
ginal series.

3. Proposed forecasting method

3.1. Data decomposition through wavelet filtering

Our proposed method consists of three steps: (1) wavelet trans-
forms to decompose the data in the trend part (TP) and variation
part (VP), (2) determination of the optimal decomposition level,
and (3) construction of forecasting models. First, wavelet trans-
forms are conducted to the original time series data to obtain the
same number of coefficients as the size of the data. Further, deno-
ising that shrinks the empirical detail wavelet coefficients toward
zero is performed to remove noise. We used soft thresholding in
this study (Donoho & Johnstone, 1994). A wavelet filtering method
is used to partition the data into the TP and VP (Chang and Yadama,
2010). More precisely, the TP can be obtained by setting all the
detail coefficients at all levels dj;kðj ¼ 1; . . . ; JÞ to zero while main-
taining all coarse approximation coefficients, cj;kðj ¼ 1; . . . ; JÞ. Simi-
larly, the VP can be obtained by setting all the coarse
approximation coefficients at the last level, cJ;k to zero while main-
taining all detail coefficients. The TP and VP can be considered the
overall trend and variation information in a time series. Fig. 2
shows how a series can be decomposed into the TP and VP by
wavelet filtering. Note that in this paper, we used Daubechies
wavelets as a basis function whose scale and detail wavelets are
shown in Fig. 3.

3.2. Choosing the optimal decomposition level

For modeling, the dataset is divided into training (80%), valida-
tion (10%), and testing (10%) sets. The training set is used to create
a model, and the testing set is used to evaluate the model. The val-
idation set is used to select the optimal parameters for the decom-
position level of wavelet transforms. To determine an adequate
decomposition level, we varied the number of levels for both the
TP and VP from one to six until the model delivered the best accu-
racy in terms of the minimum mean absolute percentage error
(MAPE). We believe a potential overfitting problem by using two
separate models (TP and VP) can be addressed by adjusting the
decomposition levels in the wavelet transforms.
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