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a b s t r a c t

Dec14 and Dec15, carbon prices of European Union Emissions Trading Scheme in phase III, are studied
from the chaotic point of view. Firstly, chaotic characteristics of carbon price series are identified by three
classic indicators: the maximum Lyapunov exponent, the correlation dimension and the Kolmogorov
entropy. Both Dec14 and Dec15 have positive maximum Lyapunov exponents, and fractal correlation
dimensions and non-zero Kolmogorov entropies, which demonstrates that the fluctuant nature of carbon
price can be explained as a chaotic phenomenon. The carbon price dynamic system is recovered by recon-
structing the phase space. Based on phase reconstruction, an multi-layer perceptron neural network pre-
diction model is set up for carbon price to characterize its strong nonlinearity. The logic of the MLP are
described in detail. K-fold cross-validation method is applied to show the validation of the model. Four
measurements in level and directional prediction are used to evaluate the performance of the MLP model.
Results show the good performance of the MLP network model in predicting carbon price.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Carbon market is an important part of global emission reduc-
tion project. According to the requirement of Kyoto protocol about
greenhouse gas, the European Union (EU) established the EU Emis-
sions Trading Scheme (EU ETS) in January 2005. It is one of the ear-
lier cap-and-trade systems restricting carbon dioxide emissions,
which covers around 12,000 installations in 25 countries. Cur-
rently, the carbon futures market under EU ETS is the largest one
in the world, whose transaction volume and price fluctuation both
play a significant implication for the global carbon market (Kossoy
& Guigon, 2012). Besides, carbon market presents unstable and
fluctuant trends as influenced by the market mechanisms and
some other factors such as climate agreement, weather variations
and economic situation. Hence, it is an absolute necessity to make
an accurate prediction for carbon prices so as to provide references
for the other carbon markets.

Carbon prices analysis has caused great concern recently. Yu
and Mallory (2014) pointed out that shock in the Euro/USD
exchange rate has influence on the carbon credit market. Zhu,
Ma, Chevallier, and Wei (2014) explored the dynamic behavior of
European carbon futures price, indicting that carbon price behavior

is asymmetric and the long-term bearish probability is greater than
the long-term bullish probability. Daskalakis (2013) showed weak
market efficiency of four carbon dioxide emission allowance
futures in the phase II. Zhu and Wei (2013) made a prediction for
the carbon price in phase II by comparing the predicting results
of different models. Feng, Zou, and Wei (2011) analyzed the vola-
tility of carbon futures price under EU ETS from a nonlinear
dynamics point of view, proving that carbon market is weak and
unstable despite having general market characteristics.

These studies above provide available reference for the analysis
of carbon futures price. However, they mainly aimed at phase I and
phase II and little researches involves the aspect of carbon prices
predicting in phase III. As we all know, launched in 2005, the EU
ETS is now in its third phase, running from 2013 to 2020. In order
to strengthen the system, a major revision approved in 2009,
which means the phase III is significantly different from phases I
and II and far more harmonized than before based on rules.
Besides, Chen, Wang, and Wu (2013) showed both price mecha-
nism and volatility are dramatically different between phase I
and phase II. Therefore, we wonder it is valuable to study the car-
bon prices in the new phase.

In recently years, various approaches have been developed for
time series predicting, including linear and nonlinear approaches.
The autoregressive integrated moving average (ARIMA) model
was most widely adopted linear one. However, the ARIMA model
has no effect on digging nonlinear characteristic hidden in a time

http://dx.doi.org/10.1016/j.eswa.2014.12.047
0957-4174/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +86 511 88780164.
E-mail addresses: fan131@ujs.edu.cn (X. Fan), 1101685048@qq.com (S. Li),

tianlx@ujs.edu.cn (L. Tian).

Expert Systems with Applications 42 (2015) 3945–3952

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa

http://crossmark.crossref.org/dialog/?doi=10.1016/j.eswa.2014.12.047&domain=pdf
http://dx.doi.org/10.1016/j.eswa.2014.12.047
mailto:fan131@ujs.edu.cn
mailto:1101685048@qq.com
mailto:tianlx@ujs.edu.cn
http://dx.doi.org/10.1016/j.eswa.2014.12.047
http://www.sciencedirect.com/science/journal/09574174
http://www.elsevier.com/locate/eswa


series. More attention has been paid to nonlinear models, espe-
cially the artificial neural network (ANN) due to its excellent non-
linear modeling capability. Being capable of mapping any linear or
non-linear functions, the ANN has been applied in various fields
(Atsalakis & Valavanis, 2009; de Oliveira, Nobre, & Zarate, 2013;
Firat & Gungor, 2009; Kolarik & Rudorfer, 1994; Shafie-khah,
Moghaddam, & Sheikh-El-Eslami, 2011). Among the ANN models,
the multi-layer perceptron (MLP) neuron network is the most
widely used in time series predicting (de Oliveira et al., 2013). It
depends on the network structure (topology,connections,neurons
number) and their operational parameters (learning rate, momen-
tum, etc), whose network architecture has a obvious effect on the
results performance.

The main object of the paper is to identify the chaotic character-
istics of the carbon prices in phase III and forecast the trend of the
carbon price in a short time. We will adopt the maximum Lyapunov
exponent, the correlation dimension and the Kolmogorov entropy
to identify the chaotic characteristics. Then we will make a predic-
tion for the carbon prices based on an MLP network prediction
model.

The remainder of the paper is structured as follows. Section 2
describes the data source in the paper. Section 3 presents the cha-
otic characteristic analysis of carbon prices. Detailed logic of the
MLP are described in Section 4. Section 5 shows the experimental
test and results. The last section devotes to the overall conclusion.

2. Data source

We consider carbon futures prices of the EU allowance (EUA)
from the European Climate Exchange (ECX). Locating in London,
the ECX is the largest carbon market under the EU ETS, in which
there are spot, futures, options of the EU allowance (EUA) and Cer-
tified Emission Reduction(CER) and the trading volume of EUA is
the largest. Two series of carbon futures prices, Dec14 and
Dec15, are selected as the experimental data, both coming from
the EUA. For Dec14, limited to the website permission, the daily
trading data from April 8, 2008 to March 31, 2014 are chosen,
exclusive of public holidays, with a total of 1546 observations.
Dec15 is from August 6, 2010 to March 31, 2014, exclusive of pub-
lic holidays, with a total of 953 observations. The time series plots
of Dec14 and Dec15 are presented in Fig. 1. We can see that carbon
price presents high uncertainty and nonlinearity.

3. Chaotic characteristic analysis of carbon price series

We shall show that carbon prices of Dec14 and Dec15 are cha-
otic from aspects of the maximum Lyapunov exponent, the corre-
lation dimension and the Kolmogorov entropy.

Let xðtÞ be the carbon price at time t; t ¼ 1; . . . ;N. Supposing the
carbon time series xðtÞ is generated by a dynamical system. Next
we will judge whether this system is deterministic stochastic and
linear or nonlinear. Chaotic time series analysis is a powerful
method to fulfill this goal. By this theory, dynamic of the one-
dimensional carbon price can be recovered in a higher-dimensional
space.

For chaotic time series analysis, the crucial step is the recon-
struction of state space, which generally is an m-dimension space.
For the reconstruction of state space, we have various approaches
to choose. But the time delay coordinate method is the best selec-
tion, as which can keep the dynamical properties of the original
system (Parker, 1989). This method is to draw a time series on
one axis while contrasting the same series on the other axes with
a time delay.

Now we construct the phase space fYðtÞg. Based on the Takens’
method (Takens, 1986), a point YðtÞ in the state space can be
described by

YðtÞ ¼ ½xðtÞ; xðt � sÞ; . . . ; xðt � ðm� 1ÞsÞ� ð1Þ

t ¼ 1;2; . . . ;Nm, where m and s are both positive integers called
embedding dimension and delay time, respectively and
Nm ¼ N � ðm� 1Þs. Thus, mathematically, YðtÞ 2 Rm is a vector or
a point in the construction phase space. If the dynamical properties
of xðtÞ is recovered in Rm space, then it can be recovered in a space
with higher dimension than m. Thus we just need the minimum
embedding dimension. To reconstruct the phase space, we must
determine the two parameters mand s. There are several methods
to determine the appropriate embedding dimension and delay time,
such as the mutual information (Fraser & Swinney, 1986), the false
neighbors (Kennel, Brown, & Abarbanel, 1992) and the Cao’s
method (Cao, 1997), etc. We shall apply the Cao’s method to calcu-
late the s and tw, where tw is the time window. Then m can be deter-
mined followed according to the equation between the minimum
dimension m and s : tw ¼ ðm� 1Þs (Kim, Eykholt, & Salas, 1999).
For Dec14 and Dec15, m are calculated be 3 and 2, respectively.
We reconstruct the 3-D phase spaces for each series (see Fig. 2).
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Fig. 1. Dec14 and Dec15 time series during April 2008–March 2014.
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