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24As with Petri nets (PNs), the state space explosion has limited further studies of fuzzy Petri net (FPN), and
25with the rising scale of FPN, the algorithm complexity for related applications using FPN has also rapidly
26increased. To overcome this challenge, we propose a decomposition algorithm that includes a backwards
27search stage and forward strategy for further decomposition, one that divides a large-scale FPN model
28into a set of sub-FPN models using both a presented index function and incidence matrix. In the backward
29phase, according to different output places, various completed inference paths are recognized automat-
30ically. An additional decomposition operation is then executed if the ‘‘OR’’ rule exists for each inference
31path. After analysing the proposed algorithm to confirm its rigor, a proven theorem is presented that cal-
32culates the number of inference paths in any given FPN model. A case study is used to illustrate the fea-
33sibility and robust advantages of the proposed decomposition algorithm.
34� 2015 Published by Elsevier Ltd.
35

36

37

38 1. Introduction

39 For the past decades, the Petri net (PN) has been successfully
40 applied in various industrial fields (Murata, 1989; Urawski &
41 Zhou, 1994)Q4 . However, along with increased complexity of the
42 sophisticated system, the homologous scale of the PN model has
43 significantly grown as well. This shortfall is called ‘state space
44 explosion,’ which has served to limit exhaustive studies and fur-
45 ther implementation of the PN model. To overcome this challenge,
46 numerous simplifications (decomposition algorithms) for the PN
47 model have been based on and proposed for different application
48 environments. For example, Berthelot and Terrat (1982) presented
49 a technique to divide a complex PN model into a group of small-
50 scale, easy-to-analyse sub-models. Murata and Koh (1980) pro-
51 posed several reduction methods for T-graph and discussed the
52 consistence of dynamic properties between T-graph and sub-mod-
53 els. Lee-Kwang, Favrel, and Baptiste (1987) employed six reduction
54 rules to control the scale of the PN model. Li, Zhou, and Dai (2012)
55 introduced an algebraic reduction operation for the general trans-
56 formation of nets and applied the approach to model and analyse a
57 mail sorting system. Shen, Chung, Chen, and Guo (2013) also

58designed an effective reduction approach for Petri net using match-
59ing theory.
60Fuzzy Petri net (FPN), which is one type of high level Petri net
61(HLPN), is proposed in this research to model, analyse, and imple-
62ment inference for knowledge-based systems (KBSs) or systems
63with uncertainty (Looney, 1988). Up to now, FPN has been applied
64widely for several industrial areas, such as traffic engineering
65(Asthana, Ahuja, & Darbari, 2011; Barzegar, Davoudpour, Meybodi,
66Sadeghian, & Tirandazian, 2011; Cheng & Yang, 2009), abnormality
67monitoring (Liu, Li, & Zhou, 2011), workflow management (Gong &
68Wang, 2012; Ye, Jiang, Diao, & Du, 2011), robotics engineering (Wai
69& Liu, 2009; Wai, Liu, & Lin, 2010), etc.
70However, the implementation of inference using the FPN model
71became more difficult due to the increasing of the scale of that
72model (state space explosion issue). These difficulties of FPNs
73explored in this research are as follows:

741. With the growing of the scale of the FPN model, the number of
75requisite parameters is also increased. In recent literature, the
76values of parameters are determined based on the experience
77of the related experts. This also indicates that the accuracy of
78the reasoning result is hard to control because of the increasing
79number of parameters of the FPN model.
802. The existing reasoning algorithms can be separated into two
81main mechanisms, namely reasoning by using spurting tree
82and reasoning by algebraic analysis. However, dimensions of
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83 the spurting tree or related matrices/vectors also depend on the
84 scale of the FPN model. Therefore, the dimensions of these
85 matrices and vectors are all increased with the growing of the
86 scale of the FPN model.
87

88 Focusing on these two challenges, a possible method to simplify
89 the inference process is to divide the large-size FPN model into a
90 series of completed reasoning paths (sub-FPN models) for each of
91 the output places. As a backward compatible extension of PN,
92 FPN preserves useful PN properties while extending its descriptive
93 ability to fuzzy data. Hence, existing outcomes from the PN model
94 can be utilized to construct a related decomposition algorithm for
95 the FPN model. However, the biggest difference between FPN and
96 other PNs is that there are various inference paths in the FPN
97 model. Hence, their inner-reasoning relationship will be destroyed
98 if the entire FPN model is decomposed using the existing algo-
99 rithms mentioned above. Focusing on this characteristic, a novel

100 biphasic decomposition algorithm for the FPN model is presented
101 in this paper after a systematic analysis of the existing decomposi-
102 tion algorithm. The proposed decomposition algorithm divides an
103 FPN into a set of completed, separated and irrelevant sub-FPN
104 models (inference paths). The main contributions of this effort
105 are summarized as follows.

106 1. A two-purpose index function is proposed to record the pre-set
107 placements in the FPN model and judge whether the ‘‘OR’’ rule
108 exists;
109 2. A biphasic decomposition algorithm is presented that divides
110 the FPN model using the proposed index function and incidence
111 matrix;
112 3. A proven theorem is presented to calculate the number of infer-
113 ence paths in any given FPN model.
114

115 The remaining sections of this paper are organized as follows.
116 Section 2 discusses concepts related to FPN and the fuzzy produc-
117 tion rule (FPR). Section 3 describes the implementation process of
118 the proposed algorithm. Section 4 reviews details of our algo-
119 rithm and provides the theorem just cited. In Section 5, a case
120 study is presented that illustrates the algorithm’s implementa-
121 tion. Section 6 presents conclusions and recommendations for
122 future work.

123 2. Fuzzy Petri net and fuzzy production rule

124 In this section, FPN and FPR formalisms are described and the
125 corresponding FPN models for each FPR type are generated, after
126 which concepts related to the proposed algorithm are introduced.

127 2.1. Fuzzy Petri net

128 An 8-tuple formalism of FPN is selected for implementation in
129 the proposed algorithm.

130 Definition 1 (Fuzzy Petri net (FPN)). FPN is represented by an
131 8-tuple

P
¼ fP; T;M; I;O;W;l;CFg, where

132 1. P ¼ fp1; p2; � � � ; png is a finite set of places. In this formalism, P is
133 classified into three sets, which are Pin/ Pmiddle / Pout .

Pin set of input places;
Pout set of output places;
Pmiddle set of places except input and output places.

141

142 Moreover, Pin \ Pmiddle \ Pout ¼£ and Pin [ Pmiddle [ Pout – £.
143 2. T ¼ ft1; t2; . . . ; tng is a finite set of transitions.

1443. M ¼ ðm1;m2; . . . ;mnÞT is a vector of fuzzy marking. mi 2 ½0;1� is
145the truth degree of pi ði ¼ 1;2; . . . ;nÞ. The initial truth degree
146vector is denoted by M0.
1474. I : P � T ! f0;1g is the n�m input matrix. Iðpi; tjÞ records
148whether a directed arc from pi to tj exists ½ði ¼ 1;2; . . . ;

149n; j ¼ 1;2; . . . ;mÞ�; where
150

Iðpi; tjÞ ¼
1 if there is a directed arc from pi to tj ;

0 if there is not a directed arc from pi to tj:

�
152152

1535. O : P � T ! f0;1g is the n�m output matrix. Oðpi; tjÞ records
154whether a directed arc from tj to pi exists ½ði ¼ 1;2; . . . ;

155n; j ¼ 1;2; . . . ;mÞ�; where
156

Oðpi; tjÞ ¼
1 if there is a directed arc from tj to pi;

0 if there is not a directed arc from tj to pi:

�
158158

1596. wði; jÞ is the weight of the arc from pi to tj .
1607. l : l! ð0;1�; lj is the threshold of tj ;
1618. CF is the belief strength, where CFis 2 ½0;1� is the support
162strength of the arc from tj to ps ðs ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ;mÞ.

1632.2. Fuzzy production rule (FPR)

164FPR is a type of production rule that describes the interior rela-
165tionship between pre-positions and conclusions with fuzzy param-
166eters (Bandler, 1985; Yeung & Tsang, 1997; Tsang & Yeung, 1997).

167Definition 2 (Fuzzy production rule). The general FPR formalism is
168described as follows:
169

if DðkÞ then Q ðCF;l;wÞ; where 171171

172

173

1741. D is a finite set of preconditions, D ¼ fD1;D2; . . . ;Dng;
1752. Q is a finite set of conclusions, Q ¼ fQ1;Q2; . . . ;Qng;
1763. k is the truth degree of each precondition, k 2 ½0;1�;
1774. CF is the belief strength of this rule, where CF 2 ½0;1� is the cred-
178ibility after implementation of the rule;
1795. l is the threshold of the rule, l 2 ½0;1�;
1806. w is the weight of each precondition, w 2 ½0;1�.
181

182FPRs can be classified into three types: Simple, AND, or OR.

183Type 1: Simple rule

184
185

if DðkÞ then Q ðCF;l;w ¼ 1Þ 187187

188If k > l exists, then the rule can be fired. The corresponding FPN
189model of a simple rule is generated as shown in Fig. 1(a), and the
190result of a fired rule after firing is illustrated in Fig. 1(b).

191Type 2: ‘AND’ rule
192
193

if D1ðk1Þ and D2ðk2Þ and � � � and DnðknÞ then Q ðCF;l;
X

wi¼1Þ 195195

196If
P

wiki P l exists, then the rule can be fired. The correspond-
197ing FPN model of the ‘‘AND’’ rule is generated as shown in Fig. 2(a),
198and the result of a fired rule after firing is illustrated in Fig. 2(b).

199Type 3: ‘OR’ rule
200
201

if D1ðk1Þ or D2ðk2Þ or � � � or DnðknÞ then Q ðCF;l;wi ¼1Þ 203203

204If wiki > li exists, then the rule can be fired. The corresponding
205FPN model of the ‘‘OR’’ rule is generated as shown in Fig. 3(a), and
206the result of a fired rule after firing is illustrated in Fig. 3(b).
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