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Solving the multi-stage portfolio optimization (MSPO) problem is very challenging due to nonlinearity of
the problem and its high consumption of computational time. Many heuristic methods have been
employed to tackle the problem. In this paper, we propose a novel variant of particle swarm optimization
(PSO), called drift particle swarm optimization (DPSO), and apply it to the MSPO problem solving. The
classical return-variance function is employed as the objective function, and experiments on the prob-
lems with different numbers of stages are conducted by using sample data from various stocks in S&P
100 index. We compare performance and effectiveness of DPSO, particle swarm optimization (PSO),
genetic algorithm (GA) and two classical optimization solvers (LOQO and CPLEX), in terms of efficient
frontiers, fitness values, convergence rates and computational time consumption. The experiment results
show that DPSO is more efficient and effective in MSPO problem solving than other tested optimization

tools.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Financial optimization, involving asset allocation and risk man-
agement, is one of the most attractive areas in decision-making un-
der uncertainty. While asset allocation problem decides the
percentage of the overall portfolio value allocated to each portfolio
component, risk management measures the risk of different invest-
ment instruments and creates or maintains portfolios with the
specified risk-return characteristics. Although asset allocation
and risk management are two indiscerptible parts in financial opti-
mization, risk management has become a central topic for the
management of financial institutions since 1990s (Elton, 1995).
With the availability of a variety of sophisticated quantitative
models and optimization tools, there is now a greater opportunity
to manage risk more efficiently. Optimization models have made a
significant impact on several dimensions of asset allocation and
risk management. A multi-stage stochastic optimization is a quan-
titative model that integrates asset allocation strategies and saving
strategies in a comprehensive fashion. It manages portfolio in con-
stantly changing financial markets by periodically rebalancing the
asset portfolio to achieve return maximization and risk minimiza-
tion. The multi-stage optimization technique captures dynamic as-
pects of the problem, leading to optimal portfolio and efficient risk
management. (Birge & Louveaux, 1997; Carino & Ziemba, 1998;
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Mulvey, Rosenbauma, & Shetty, 1997; Mulvey & Shetty, 2004;
Mulvey & Vladimirou, 1995; Zhao & Zeimba, 2001). As such, it
can provide superior performance over single period model (Berger
& Mulvey, 1996; Carino et al., 1994).

The multi-stage portfolio optimization (MSPO) problem is com-
plex and non-linear with many local optima. A number of different
algorithmic approaches have been proposed for solving stochastic
optimization problems. To solve the MSPO problem, one may em-
ploy linear programming solvers such as CPLEX and OSL, by which
the nonlinear terms in the objective function can be piecewise lin-
earized (Danzig & Infanger, 1993). The interior-point algorithms,
employed by LOQO solver, are well suited to the scenario structure
of multi-stage stochastic programs (Vanderbei, 1992). Searching
the global solution by these methods, however, is computationally
expensive and ineffectively.

Since time is a constraint for financial problems, many research-
ers have employed heuristic methods to find optimal asset alloca-
tion in order to achieve a trade-off between the performance and
the computational time. Berger, Glover, and Mulvey (1995), Berger
and Mulvey (1996) applied Tabu Search, an adaptive memory pro-
gramming, to the problem. Their method improves computational
performance considerably as compared with interior-point meth-
ods for solving the problem. Chan et al. use genetic algorithms
(GA) as their self-learning portfolio optimizer to optimize one’s
asset allocation in their portfolio optimization system (Chan,
Wong, Cheung, & Tang, 2002). GA reassures a higher chance of
reaching a global optimum by starting with multiple random
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search points and considering several candidate solutions simulta-
neously. It can be used to solve difficult problems with objective
functions that do not posses “nice properties” such as continuity,
differentiability, satisfaction of the Lipshcitze Condition, etc.

Although GA has many advantages over traditional local opti-
mization algorithms, it is a time consuming solver because of its
slow convergence speed (Fogel, 1994; Michalewicz, 1992). In
1990s, a development in optimization theory saw the emergence
of swarm intelligence, a category of stochastic search methods
for solving global optimization (GO) problems (Dorigo, Maniezzo,
& Colorni, 1996; Kennedy & Eberhart, 2001). particle swarm opti-
mization (PSO) method is one of its member. It was originally pro-
posed by Kennedy and Eberhart as a simulation of social behavior
of bird flock, and initially introduced as an optimization method in
1995 (Kennedy & Eberhart, 1995). The PSO algorithm can be easily
implemented and is computationally inexpensive, since its mem-
ory and CPU speed requirements are low. Moreover, it does not re-
quire gradient information of the objective function under
consideration but only its values, and it uses only primitive math-
ematical operators. PSO has been proved to be an efficient method
for many GO problems and in some cases it does not suffer the dif-
ficulties encountered by GA (Angeline, 1998a; Eberhart & Shi,
1998).

In this paper, inspired by the motion of electrons in a conductor
under electric field, we propose a new variation of PSO, called drift
particle swarm optimization (DPSO), and apply it to multi-stage
portfolio optimization (MSPO) problem. DPSO has some character-
istics of the PSO algorithm, such as collectiveness and mutual
learning among individuals. However, unlike PSO, DPSO is a global
convergent algorithm and has stronger search ability than PSO. The
efficiency and effectiveness of DPSO in the MSPO problem solving
was evaluated by testing the algorithm on the problems with sam-
ple data collected from S&P 100 Index and the prices of its compo-
nent stocks. PSO, GA, CPLEX, and LOQO were also tested for the
purpose of performance comparison.

The rest of the paper is organized as follows. In Section 2, the
MSPO model is described. The proposed DPSO algorithm is pre-
sented in Section 3. Section 4 presents how to apply DPSO in the
MSPO problem. The experiment results are provided in Section 5.
Some concluding remarks are given in Section 6.

2. Multi-stage portfolio optimization model
2.1. Problem statement

The multi-stage portfolio optimization (MSPO) model views the
financial optimization as a multi-period dynamic problem where
transactions take place at discrete time points. To define the model,
we divide the entire planning horizon T into two discrete intervals
T; and T,, where T; =0,1,...,tand T, =7 + 1,...,T. The former cor-
responds to periods in which investment decisions are made. Per-
iod 7 defines the date of planning horizon and we focus on the
investor’s position at the beginning of period 7. Decisions occur
at the beginning of each time stage. Much flexibility exists so that
an active trader might see his time interval as short as minutes,
whereas a pension plan advisor will be more concerned with much
longer planning periods such as the dates between the annual
Board of Director’s meetings. It is possible for the steps to vary over
time-short intervals at the beginning of planning period and longer
intervals towards the end. T, handles the horizon at time 7 by cal-
culating economic and other factors beyond period 7 up to period
T. The investor cannot render any active decisions after the end of
period 7.

Asset investment categories are defined by a subscript set
A={1,2,...,I}, with category 1 representing cash. The remaining

categories can include broad investment groupings such as stocks,
bonds, and real estate. The categories should track well-defined
market segment. Ideally, the co-movements between pairs of asset
returns would be relatively low so that diversification can be done
across the asset categories.

Uncertainty is modeled through a large but finite number S of
scenarios. Each scenario represents a possible realization of all
uncertain parameters in the model. To be specific, let @, represent
the vector of random parameters whose values are revealed in per-
iod t. Then the set of all scenarios is the set of all realizations
(@5, w5,..., %), se§:={1,2,...,8}, of (w1,w3,...,w). Each sce-
nario s has a probability 7, where 7, > 0 and 3°° |7, = 1. Since in a
dynamic model information on actual value of the uncertain
parameters is revealed in stages, a suitable representation of sce-
narios is given by a scenario tree. Fig. 1 shows a scenario tree when
T=3and S = 8. Each path from t = 0 to t = T represents one scenario.
Any node of the tree, corresponding to time t, symbolizes a possi-
ble state of the world at time ¢, represented by the observed values
of w1,w;,...,w. The branches directly to the right of it symbolize
the various values of w¢; (and their corresponding conditional
probabilities) given the realization of w4, ,,...,w;. Obviously, all
scenarios passing this node have the same history in periods
1,2,...,t. The status of decision variables is related to the scenario
tree too. Basically, a decision at time t may depend on the observed
part of the scenario at that time, but not on unknown values of fu-
ture periods. That is, for each possible history (i.e. for each node at
time t in the scenario tree) there is precisely one vector of decision
variables representing the decisions at hand.

We assume that the portfolio is rebalanced at the beginning of
each period. Alternatively, we could simply make no transaction
except reinvest any dividend and interest — a buy and hold strat-
egy. For convenience, we also assume that the cash flows are rein-
vested in the generating asset category and all the borrowing is
done on a single period basis.

2.2. Parameters and decision variables

For eachn e A, t € T, and s € S, we define the following param-

eters and decision variables.
Parameters

Tht =1+ p;,, where p;is the return percentage of asset n,
time period t under scenario s (for example, projected by
the stochastic scenario generator (Mulvey, Rosenbauma,
& Shetty, 1996, 1999))

s probability that scenario s occurs, thus ans =1

t= t=1 =2 =3

Fig. 1. A scenario tree with two scenarios and three time periods.



Download English Version:

hitps://daneshyari.com/en/article/10322899

Download Persian Version:

https://daneshyari.com/article/10322899

Daneshyari.com


https://daneshyari.com/en/article/10322899
https://daneshyari.com/article/10322899
https://daneshyari.com

