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a b s t r a c t

This paper considers problem contexts in which decision makers are unable or unwilling to assess trade-
off information precisely. A simulation experiment is used to assess (a) how closely a rank order of
alternatives based on partial information and stochastic multicriteria acceptability analysis (SMAA) can
approximate results obtained using full-information multi-attribute utility theory (MAUT) with multi-
plicative utility, and (b) which characteristics of the decision problem influence the accuracy of this
approximation. We find that fairly good accuracy can be achieved with limited preference information,
and is highest if either quantiles and probability distributions are used to represent uncertainty.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

When facilitating decisions it sometimes happens that some
inputs to the preference model either cannot be assessed at all or
can only be assessed within relatively large bounds of uncertainty
(e.g. [1,12,13]). This can happen for a number of reasons: a lack of
time, a politically sensitive problem context, or a lack of decision
maker (DM) involvement, for example. Whatever the reason, in
these cases the DM is unable or unwilling to express him or herself
with the degree of precision required by conventional decision
aids. We call decision problems which must be addressed under
such conditions “low-involvement” decisions. The question is
what, if any, decision support can be provided in such situations.

Stochastic multicriteria acceptability analysis (SMAA [25,19]) is
a family of decision models that can be used with arbitrarily
precise preference information. It addresses low-involvement
decision-making by providing information about the types of
preferences (if any) that would lead to the selection of each
alternative.

In this paper we use a simulation experiment to evaluate the
ability of SMAA to approximate results obtained using multi-
attribute utility theory (MAUT) where preferences are repre-
sented by a multiplicative utility function. In particular, we ask
how closely results computed from a key output from SMAA (the
acceptability index) can approximate those obtained using MAUT.

In doing so we hope to provide a broad indication of the losses
that are possible if facilitators choose to use a low-involvement
decision aid such as SMAA rather than compelling DMs to be more
precise in their assessment of certain types of preference infor-
mation – for example, using more detailed problem structuring.
We also wish to test the robustness of the SMAA approach to
various aspects of the decision process: the size of the decision
problem, the way attribute evaluations are distributed, the
underlying preference functions, the accuracy of assessed infor-
mation, the amount of preference information gathered, and the
way in which the acceptability index is constructed.

In addition to the conventional SMAA model, which uses
probability distributions to represent uncertainty in the attribute
evaluations, we also introduce and evaluate a number of ‘simpli-
fied’ models which make use of summarised measures of uncer-
tainty instead of a full probability distribution [6]. By assessing the
accuracy of both conventional and simplified uncertainty models
under a range of different conditions we hope to provide moti-
vation for the use of simplified models in appropriate circum-
stances. A similar approach has been used in Durbach and Stewart
[9] to assess the effect of using simplified uncertainty formats in
general decision-making, and we employ a similar simulation
structure in the current paper.

Our view is that in nearly all cases it is preferable to resolve
preferential uncertainty through discussion and problem structur-
ing rather than by employing more ‘lenient’ decision aids, because
of the additional insight and opportunities for learning. We focus on
those circumstances in which the DM is unable or unwilling to
participate fully in this process. In using a simulation experiment,
we acknowledge that we can only evaluate the extent to which
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using SMAA rather than MAUT might impact results. We cannot
evaluate critical issues like whether the reduced time spent on
problem structuring in SMAA is “worth” the reduction in decision
quality, or the degree to which the problem structuring process,
through the insight it generates for the DM, is useful as an end in
itself. Simulation results are unable to provide general conclusions
on the viability of different methods, but provide inputs to such
discussion by identifying the potential trade-offs in accuracy that
are implied when using a simplified model. Ultimately accuracy
must be weighed against other factors to determine which decision
model may be most appropriate for a problem.

The remainder of the paper is structured as follows. Section 2
provides a review of the relevant background literature and
notation. Section 3 describes the structure of our simulation
experiment. Section 4 presents the results in a direct fashion,
delaying a more detailed discussion of these until Section 5, which
also provides theoretical justification for some key findings using
results from applied probability theory. Section 6 discusses
implications of the simulation results for the use of SMAA as a
prescriptive decision aid, and concludes.

2. Notation and background

Consider a decision problem consisting of I alternatives
fa1; a2 ,…, aIg evaluated on J attributes fc1; c2;…; cJg. Let Zij be a
random variable denoting the attribute evaluation of ai on cj, and U be
a multi-attribute utility function mapping the attribute evaluations of
alternative ai (denoted Zi) to a real value using a weight vector w. A
joint density function f XðZÞ governs the generation of the Zij in the
space XDRI�J , and a second joint density function gðwÞ governs the
generation of imprecise or unknown weights in the weight space W.
Total lack of knowledge is usually represented by a uniform dis-
tribution in W. If restrictions have been placed on W we denote the
feasible weight space by W 0.

The original SMAA method [20] analysed the combinations of
attribute weights that result in each of a set of alternatives being
selected when using an additive utility function. Subsequently, a
number of SMAA variants have been developed. These differ in
terms of the preference model used and thus the type of pre-
ference information that is imprecisely known, but are all based
upon Monte Carlo simulation from distributions which govern
unknown preference parameters (and attribute evaluations). For
example, SMAA variants are available for value function [20,17],
outranking [10], reference point [21,5], prospect theory [18],
Choquet integral [2], and AHP [7] methods. Comprehensive
reviews are given by Tervonen and Figueira [25] and Lahdelma and
Salminen [19].

Given a particular weight vector w, the global utility of each
alternative can be computed and a rank ordering of alternatives
obtained. SMAA-2 [17] is based on simulating a large number of
random weight vectors from gðwÞ and observing the proportion
and distinguishing features of weight vectors which result in each
alternative obtaining a particular rank r (usually the “best” rank,
r¼1), using an additive value function model. Let the set of weight
vectors that result in alternative ai obtaining rank r be denoted by
Wi

r. SMAA is based on an analysis of these sets of weights using a
number of descriptive measures, the most important of which are:

Acceptability indices: The rank-r acceptability index bi
r measures

the proportion of all simulation runs, i.e. weight vectors, that make
alternative ai obtain rank r. A cumulative form of the acceptability
index called the R-best ranks acceptability index is defined as
BR
i ¼

PR
r ¼ 1 b

r
i and measures the proportion of all weight vectors

for which alternative ai appears anywhere in the best R ranks. In

the discussion in Section 5 we make use of ordered acceptability
indices, where we denote the alternative with the k-th largest
rank-r acceptability index by arðkÞ, and its acceptability index by brðkÞ.
Central weight vectors: The central weight vector wc

i is defined as
the expected center of gravity of the favourable weight space Wi

1.
It gives a concise description of the “typical” preferences sup-
porting the selection of a particular alternative ai, and in practice is
computed from the empirical (element-wise) averages of all
weight vectors supporting the selection of ai as the best
alternative.

The exact number of Monte Carlo iterations that are required to
achieve a given accuracy is discussed in Tervonen and Lahdelma
[26]. To estimate the acceptability index within δ of the true value
with 95% confidence, one requires 1:962=4δ2 iterations – so that
10 000 iterations will usually be sufficient to achieve error
bounds of 1%.

Uncertain attribute evaluations are conventionally treated in
SMAA using probability distributions, with each simulation run
drawing values at random from these distributions. Adapting
SMAA to use other uncertainty formats, however, is generally
straightforward, as described in Durbach and Davis [6]. Each
uncertain attribute is simply replaced by a number of lower-level
attributes which capture the uncertainty in the evaluations on that
attribute, using one of many possible simplified uncertainty for-
mats. In this paper, we test the effect of using three different for-
mats: expected values; variances; and quantiles. This transforms
the decision problem into one having the same appearance as a
deterministic decision problem, which can be treated by any of the
existing SMAA models with some minor modifications. We
sometimes refer to these collectively as “SMAA models” although
it should be clear that these are approximations of external
uncertainty built on top of the same SMAA approach. The models
are described in more detail in Section 3. Table 1 provides a
summary of notation used in the paper.

3. Description of the simulation study

The general structure of the simulation1 is summarised in Fig. 1
and implements the following basic steps:

1. Form a hypothetical problem context, generating the relevant
attribute evaluations.

2. Apply a multiplicative MAUT model to derive idealised or ‘true’
utilities and thus find the ‘true’ rank ordering of alternatives.

3. Calculate summarised measures of uncertainty based on the
generated data and incorporating observational errors.

4. Run different models using SMAA and the inputs from step 3,
and then compare the model results against the ‘true’ utilities
and rank order obtained from step 2.

3.1. Generating attribute evaluations

We consider a decision problem involving I alternatives evaluated
over J attributes. External uncertainty about attribute performance is
captured by simulating attribute evaluations for alternative ai on
attribute cj from a gamma distribution with mean μij, standard
deviation σij, and skewness ξij. We denote this distribution f ijðZijÞ. Each
mean μij is drawn randomly from a uniform distribution between
0.2 and 0.8 for all alternatives on all attributes. Means are then stan-
dardised across all the attributes to lie on the unit hypersphere i.e.

1 All codes used to run the simulations described in this section are openly
available from http://dx.doi.org/10.5281/zenodo.30523.
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