
A multi-agent framework for distributed theorem proving

Chih-Hung Wu*

Department of Electrical Engineering, National University of Kaohsiung, 700 Kaohsiung University Road, Kaohsiung 811, Taiwan

Abstract

In this paper, we explore the possibility of distributed theorem proving using agent-based technologies. We investigate the hyper-linking

theorem proving and find out its components which can be performed independently by agents. A multi-agent framework is proposed,

wherein distributed theorem proving is achieved by the collaboration of multi-agents each of which performs part of the hyper-linking

strategy for completing the proof of the given problems. In this framework, agents communicate with each other via KQML-based messages.

Additionally, several system agents are designed for monitoring the traffic and performance of the framework and sharing information. The

architecture and the design concepts are addressed. Experimental results show that the proposed framework can effectively perform

distributed theorem proving on the Internet.

q 2005 Elsevier Ltd. All rights reserved.

Keywords: Intelligent agents; Multi-agent system; KQML; Theorem proving; The hyper-linking strategy; First-order logic

1. Introduction

For past decades, scientists have been interested in

automated deduction systems which can be applied to expert

systems, planning, common sense reasoning, deductive

databases, hardware/software verification, and many other

areas. The so-called theorem proving is a core-technique in

a deduction system, which tries to ‘prove’ the formal

correctness of a set of clauses describing the underlying

problem. Unfortunately, many problems in theorem proving

are NP-complete, even NP-hard (Chang & Lee, 1973); and

it happens that finding proofs of a hard problem may require

tens of hours of execution on workstations due to the huge

search space. This motivates many researchers to explore

parallel or distributed computation for high-performance

automated deduction systems.

Several high-performance parallel deduction systems

have been proposed and implemented, such as those

discussed in Section 5. Parallelizing a sequential system

can be studied with respect to fine-grain coarse-grain

strategies by executing machine instructions or sub-

processes of the system in parallel, respectively. Experi-

mental results show that many computational efforts in

finer-grain parallelism are not directive and futile. Besides,

implementing finer-grain parallelism is costly since it

usually needs (1) expensive hardware such as computer

systems with a number of processing units and high-speed

memory modules and (2) a lot of human-hours for

developing and testing parallel algorithms and (3) efficient,

but usually complicated, communication protocols for

efficient data exchange. Attention has been shifted to

coarser-grain parallelism for deduction systems (Bonacina

& Hsiang, 1994).

Fortunately, with standard connection protocols like

TCP/IP, there are a number of inexpensive, heterogeneous,

computers connected on the Internet which seemingly form

an ideal distributed environment for general-purposed

computation as well as for distributed theorem proving.

However, if Internet-based computation is applied to

distributed theorem proving, the following issues have to

carefully considered.

(1) Task Partitioning and Load Balancing. Deductive

systems are computationally intensive. Distributed

processing usually divides a complicated task into

several sub-tasks each of which is performed on a

computing machine and reassembles the results

returned from each machine. If the main task is

improperly partitioned, the loads of computing

machines are unbalanced. The grainity to be distributed

processed should be carefully designed.

Expert Systems with Applications 29 (2005) 554–565

www.elsevier.com/locate/eswa

0957-4174/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.

doi:10.1016/j.eswa.2005.04.013

* Corresponding author. Tel.: C75 919 446; fax: C75 919 374.

E-mail address: johnw@nuk.edu.tw

http://www.elsevier.com/locate/eswa


(2) Communication. Evidently, even if tasks are properly

partitioned, they unavoidably need to stop for commu-

nicating with each other for data exchange for

completing the main task. Clearly, volume of com-

munication degrades the performance of the whole

system. A clearly known fact is that the reliability of the

Internet is less than well-designed and tested multi-

processor computers. Connecting to such hetero-

geneous computing machines may encounter

unexpected delays of traffics. A standard for communi-

cation is needed for fast exchange of information.

(3) Control and Monitoring. Deductive systems apply

different directive parameters which may be set

heuristically. Such parameters need to be carefully

adjusted. Also, deductive problem-solving is goal-

oriented, no matter it is done in a centralized or

distributed manner; there should be a means to examine

if the goal is achieved. A management mechanism for

monitoring the progress and reliability of all computing

machines is essential.

Recently, Internet-based collaboration of multi-agents is

an interesting research topics and has been receiving a lot of

attentions (Hendler, 2001; Maturana et al., 2004; Milano &

Roli, 2004). Software agents are computer programs

capable of flexible, autonomous, and goal-oriented actions.

In their most complex form, agents may persist over time,

are capable of timely internal context dependent reaction to

sensed events, plan and initiate unique series of actions to

achieve stated goals, and communicate with other agents (or

people) for completing the given goal. It has been suggested

that multi-agent systems are specially adequate for the

solution of problems with a dynamic, uncertain and

distributed nature (Aldea et al., 2001). In this paper, we

propose a framework of multi-agent system for distributed

theorem proving. We demonstrate our idea using the hyper-

linking proof procedure (Lee & Plaisted, 1992) which is a

refutational deduction method in first-order logic. In this

framework, distributed theorem proving is achieved in

clause-level by the collaboration of multi-agents. Agents

solve the given problem and exchange information for

sharing data and adjusting directive parameters for proving

problems. A simple, KQML-based (Finin, Labrou, &

Mayfield, 1997), scheme has been designed for exchange

of information among agents in a peer-to-peer style. The

advantages of use of this framework include lower cost and

higher expandability for distributed theorem proving,

usefulness for solving large and complex problems, and

being easily to be applied to other theorem proving

techniques.

We describe the design of the framework and the role of

each agent in this paper. The interaction and the

collaboration of agents are also discussed. The rest of the

paper is organized as follows. Section 2 gives a brief

description of the hyper-linking strategy and discusses the

tasks which can be partitioned and collaborated for

distributed processing. In Section 3, the architecture of the

multi-agent framework and the design of each agent are

described. Section 4 demonstrates the system and gives

some preliminary results. Related researches are discussed

in Section 5 followed by a summary of this study in

Section 5.

2. Background

2.1. The hyper-linking theorem proving

The hyper-linking proof procedure (HLPP) was proposed

to eliminate the duplication of clauses occurring in many

deduction methods and has been proved to be efficient

(Lee & Plaisted, 1992) compared with widely known

systems such as OTTER (McCune, 1994), sprfn (Plaisted,

1988), and PTTP (Stickel, 1988) in proving some problems

in first-order logic. HLPP is a refutational clause-form

deduction method, consisting of the following two pro-

cesses: hyper-instance generation (HIG) and propositional

satisfiability test (PSAT). Below we give a brief introduc-

tion to HLPP.

Suppose R is a set of clauses in first-order logic. HIG

produces hyper-instances by performing unification

between literals of clauses in R to instantiate these clauses.

If CZL1n.nLm is a clause in R, and M1,.,Mm are

literals from the clauses in R, with variables renamed to

avoid conflicts, and Q is a most general unifier such that LiQ
and MiQ are complementary for all i, 1%i%m, then CQ is

called a hyper-instance of C. The set {(L1, M1),.,(Lm, Mm)}

is called a hyper-link. We call C a nucleus and Mi the

electrons of C. We denote by H(R) the set of hyper-

instances of all the clauses in R and by Gr(R) the ground set

of R where all variables in R are replaced by the same

constant symbol $. Let S0 be the set S of input clauses and Si

be SiK1gH(SiK1), iR1. HIG takes clauses in Si as nuclei

and generates all hyper-instances, H(Si). Then PSAT tries to

decide the satisfiability of Gr(SigH(Si)). If Gr(SigH(Si)) is

unsatisfiable, then S is unsatisfiable and we are done; if all

clauses in H(Si) are contained in Si, i.e. SiZSigH(Si), then S

is satisfiable and we are also done. Otherwise, one more

round of HIG and PSAT is performed on SiC1. HLPP is a

saturation-based method, i.e. no clauses in SiC1 can be

considered as a nucleus before all the hyper-instances of Si

have been generated.

The efficiency of the proof procedure can be improved by

filtering hyper-instances through unit-simplification

wherein hyper-instances containing specific unit-literals

are reduced or removed from the database. A unit-literal is a

literal from a clause containing only one literal, which

usually describes a fact given by the users or derived from

the system. Similar to that in the Davis-Putnam procedure

(Davis & Putnam, 1960), two simplification rules, unit

literal deletion and unit subsumption, are employed in unit-

simplification. If all the literals of a clause are removed,

C.-H. Wu / Expert Systems with Applications 29 (2005) 554–565 555



Download English Version:

https://daneshyari.com/en/article/10323533

Download Persian Version:

https://daneshyari.com/article/10323533

Daneshyari.com

https://daneshyari.com/en/article/10323533
https://daneshyari.com/article/10323533
https://daneshyari.com

