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Abstract

We consider three criteria for describing non-disturbance between quantum measurements. While previous dis-
cussions of these criteria considered sharp measurements, we shall treat more general measurements that may
unsharp (or fuzzy). It has been shown that in the sharp case, the three criteria are equivalent to compatibility of the
measurements. We shall show that only the third criterion is equivalent to compatibility for the general fuzzy case.
Moreover, the first two criteria are not symmetric relative to the two measurements.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Kirkpatrick [9] has recently discussed three ways of describing non-disturbance between quantum
measurements. The first two are due to Luders [10] and the third to Davies [5] and Kirkpatrick [8].
Letting X andY be two quantum measurements, the three non-disturbance criteria are given roughly as
follows.

(1) The probability of an established valueYoit unchanged by the later occurrence of a valui.of

(2) The probability of occurrence of¥avalue is unchanged by a preceding executioX.of

(3) If pandgareX andyY values, respectively, then the probabilitypofollowed byq coincides with the
probability ofq followed byp.

We said that the criteria are given roughly because the English language can be imprecise and am-
biguous. We shall later translate these criteria into precise mathematical language and prove results abou
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them. It is appropriate that these criteria are phased in terms of probabilities because statistical results
are what are observed in the laboratory. Kirkpatrick showed that (1), (2) and (3) are equivalent to the
compatibility (commutativity) ofX andY and hence are equivalent to each other. However, Kirkpatrick
only considered sharp guantum measurements which are described by projection-valued measures. In the
present paper we shall generalize his results to measurements that may be unsharp (or fuzzy) and thes
are described by positive operator-valued (POV) measures. Unsharp measurements are quite importan
in quantum measurement thedBy2,5] and in applications such as quantum computation and quantum
information [11].

Unlike the sharp case, we shall show that (1), (2) and (3) are not equivalent for general measurements.
Only criterion (3) is equivalent to the compatibility fandY. Although criterion (1) implies compatibility
it is not appropriate for the general case because it also implie¥ ieaharp. Compatibility implies
(2) but the converse does not hold. Although they are not explicitly symmetric relatketaY, the
three criteria are implicitly symmetric in the sharp case because they are equivalent to the symmetric
relation of compatibility. In the general fuzzy case, only (3) is symmetriamdY. This further justifies
Kirkpatrick’s choice of (3) for his discussion of noncompatibility in classical probability theory [9]. As
in Kirkpatrick [9] and Liders [10], we shall only consider discrete quantum measurements.

2. Measurements and probabilities

LetH be a complex Hilbert space representing the state space of a physical SykedrR(H) be the
set of projections ol and&(H) the set of operators dt satisfying 0<A < 1. The elements of (H)
are calleceffectsand represent yes—no measurementS trat may be unsharp, while the elements of
P(H) represent sharp effects [4,6,7]. LIlB{H) be the set of positive trace class operatorsiamth unit
trace. The elements @(H) are calleddensity operatorand represent the set sfatesof S. WhenSis
in stateW e D(H), the probability that the effect € £(H) is observed (or has value yes) is given by
pw(A) =tr(AW), and ifAis observed then the post-measurement state becomes

AYV2WAY2 jtr(Aw), (2.1)

whenever ttAW) # 0. Of course, if ttAW) = 0 then with certaintyA will not be observed in staté&/
so the fact that2.1) is meaningless in this case is of no consequence.

For A, B € £(H), theconditional probabilitythat B is observed given thak has been observed is
defined by

pw(B | A) = tr(BAY?W AY?) jtr(AW), (2.2)

whenever ttAW) # 0[4,7]. Notice that (2.2) follows in a natural way from (2.1). Ror B € £(H) we
use the notatiod & B to denote the effect in whichis performed first and theBis performed next. We
call A& B “Aand therB.” Then in a natural way we have that

pw(A&B) = pw(A)pw (B | A) = tr(BAY?W AY/?)
and

pw(C | A& B) = tr(CBY?AY2w AY2BY/?) jtr(BAY?W AY?), (2.3)
whenever ttBAY2W AY?) £ 0.
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