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Abstract

We consider three criteria for describing non-disturbance between quantum measurements. While previous dis-
cussions of these criteria considered sharp measurements, we shall treat more general measurements that may be
unsharp (or fuzzy). It has been shown that in the sharp case, the three criteria are equivalent to compatibility of the
measurements. We shall show that only the third criterion is equivalent to compatibility for the general fuzzy case.
Moreover, the first two criteria are not symmetric relative to the two measurements.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Kirkpatrick [9] has recently discussed three ways of describing non-disturbance between quantum
measurements. The first two are due to Lüders [10] and the third to Davies [5] and Kirkpatrick [8].
LettingX andY be two quantum measurements, the three non-disturbance criteria are given roughly as
follows.

(1) The probability of an established value ofY is unchanged by the later occurrence of a value ofX.
(2) The probability of occurrence of aYvalue is unchanged by a preceding execution ofX.
(3) If p andq areX andYvalues, respectively, then the probability ofp followed byq coincides with the

probability ofq followed byp.

We said that the criteria are given roughly because the English language can be imprecise and am-
biguous. We shall later translate these criteria into precise mathematical language and prove results about
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them. It is appropriate that these criteria are phased in terms of probabilities because statistical results
are what are observed in the laboratory. Kirkpatrick showed that (1), (2) and (3) are equivalent to the
compatibility (commutativity) ofX andYand hence are equivalent to each other. However, Kirkpatrick
only considered sharp quantum measurements which are described by projection-valued measures. In the
present paper we shall generalize his results to measurements that may be unsharp (or fuzzy) and these
are described by positive operator-valued (POV) measures. Unsharp measurements are quite important
in quantum measurement theory[3,2,5] and in applications such as quantum computation and quantum
information [11].

Unlike the sharp case, we shall show that (1), (2) and (3) are not equivalent for general measurements.
Only criterion (3) is equivalent to the compatibility ofXandY.Although criterion (1) implies compatibility
it is not appropriate for the general case because it also implies thatY is sharp. Compatibility implies
(2) but the converse does not hold. Although they are not explicitly symmetric relative toX andY, the
three criteria are implicitly symmetric in the sharp case because they are equivalent to the symmetric
relation of compatibility. In the general fuzzy case, only (3) is symmetric inXandY. This further justifies
Kirkpatrick’s choice of (3) for his discussion of noncompatibility in classical probability theory [9]. As
in Kirkpatrick [9] and Lüders [10], we shall only consider discrete quantum measurements.

2. Measurements and probabilities

LetH be a complex Hilbert space representing the state space of a physical systemS. LetP(H) be the
set of projections onH andE(H) the set of operators onH satisfying 0�A�I . The elements ofE(H)

are calledeffectsand represent yes–no measurements onS that may be unsharp, while the elements of
P(H) represent sharp effects [4,6,7]. LetD(H) be the set of positive trace class operators onH with unit
trace. The elements ofD(H) are calleddensity operatorsand represent the set ofstatesof S. WhenS is
in stateW ∈ D(H), the probability that the effectA ∈ E(H) is observed (or has value yes) is given by
pW(A) = tr(AW), and ifA is observed then the post-measurement state becomes

A1/2WA1/2/tr(AW), (2.1)

whenever tr(AW) �= 0. Of course, if tr(AW) = 0 then with certaintyA will not be observed in stateW
so the fact that (2.1) is meaningless in this case is of no consequence.

For A, B ∈ E(H), theconditional probabilitythatB is observed given thatA has been observed is
defined by

pW(B | A) = tr(BA1/2WA1/2)/tr(AW), (2.2)

whenever tr(AW) �= 0 [4,7]. Notice that (2.2) follows in a natural way from (2.1). ForA, B ∈ E(H) we
use the notationA&B to denote the effect in whichA is performed first and thenB is performed next. We
call A&B “A and thenB.” Then in a natural way we have that

pW(A&B) = pW(A)pW(B | A) = tr(BA1/2WA1/2)

and

pW(C | A&B) = tr(CB1/2A1/2WA1/2B1/2)/tr(BA1/2WA1/2), (2.3)

whenever tr(BA1/2WA1/2) �= 0.
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