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a b s t r a c t

A vast number of real world problems are coined by an information release over time and the related
need for repetitive decision making over time. Optimization problems arising in this context are called
online since decisions have to be made although not all data is known. Due to technological advances,
algorithms may also resort to a limited preview (lookahead) on future events. We first embed the
paradigm of online optimization with lookahead into the theory of optimization and develop a concise
understanding of lookahead. We further find that the effect of lookahead can be decomposed into an
informational and a processual component. Based on analogies to discrete event systems, we then for-
mulate a generic modeling framework for online optimization with lookahead and derive a classification
scheme which facilitates a thorough categorization of different lookahead concepts. After an assessment
of performance measurement approaches with relevance to practical needs, we conduct a series of
computational experiments which illustrate how the general concept of lookahead applies to specific
instantiations and how a knowledge pool on lookahead effects in applications can be built up using the
general classification scheme.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Although there is an agreement on the importance of coping
with unexpected events in today's systems for production and
logistics [26,51], recent implementations of planning and sche-
duling systems still suffer from their deficiency in dealing with
uncertainty over time. In a rolling horizon, plans are determined
on the basis of forecasts by offline optimization methods [51].
However, since only decisions of the next period are implemented
before the problem gets resolved with updated data, this approach
exhibits large redundancies.

On the other hand, possibilities for collection of data about
near-future events are steadily increasing due to technological
developments [26] such as radio frequency identification (RFID),
global positioning systems (GPS) or geographical information
systems (GIS). Since planning systems in these environments are
subject to permanent information inflow, they are said to be
online. Optimization problems in this context are called online
optimization problems [24]. These problems are characterized by
the fact that decisions are required to be made repeatedly before
all data is available. In contrast to other methodologies for

optimization under uncertainty, there are no forecasts or prob-
abilities of future events assumed in online optimization. However,
as a result of technological opportunities given above, we can now
cope with uncertainty differently. Through the installation of
lookahead devices, it is possible to acquire data about future
events at an earlier point in time. Hence, uncertainty is tackled
forcefully because parts of the previously uncertain future can
now be fixed to certainty through the utilization of lookahead.
Thus, the decision making process consists of repetitive decisions
where the input to each decision only consists of the small, but
certain part of the future known at that time. Though, as can be
seen from the different information gathering devices mentioned
above, it may be reasonable to be more precise with respect to the
actual degree of “onlineness” in a specific problem setting. The
need for a concise notion of lookahead is also reflected by the
manifold perceptions of lookahead depending on the application
[2–4,14,17,29,37,45,52,56]. For this reason, this paper coins the
notion of online optimization with lookahead on a formal basis.

The task of solving online optimization problems is a recurring
pattern in industrial applications (Fig. 1): each time the functional
logic of a dynamic system requires a decision, an online algorithm
is called to deliver it, i.e., partial answers based on currently
available data have to be given such that the overall solution will
be as good as possible.

Solution methodologies for the different optimization para-
digms strongly differ from each other. Consider the input sequence
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σ ¼ ðσ1;σ2;…Þ. In offline optimization, σ is known in advance and
a plan for how to process its elements can be computed directly.
In the sequential model of online optimization [30], only one input
element is known at a time and input elements must be processed
in release order, i.e., input element σi is processed based upon
knowledge of σ1;…;σi and previous decisions on σ1;…;σi�1. In
the time-stamp model [30], each input element is assigned an
arrival date such that input elements may accumulate naturally
and automatically form some lookahead set of unprocessed input
elements. In online optimization with request lookahead [2,52],
more than one unprocessed input element may be known at a
time and also an explicit formulation of processing restrictions is
required. One could insist on sequential processing (σi must be
processed before σiþ1) or allow for a processing in arbitrary order
(σiþ1 can be processed before σi). There are a plenty of variations
of how lookahead is understood and what it means for the pro-
cessing of single input elements. For this reason, this paper will
provide the tools for classifying the main features of a specific
online optimization problem with lookahead.

Literature focuses on a worst-case type analysis of algorithm
performance – called competitive analysis [13,40] – where an
online algorithm has to compete with an optimal offline algorithm.
Derivations of this measure are based on the individual taxonomy
in a specific problem and not on a general notation valid for all
problems. Likewise, the case with lookahead has been addressed
only rarely in specific problems from routing and transportation
[4–6,36,37,52], scheduling [18,44–47,54,57,58], organization of
data structures [2,3,14,41,53,55,56], data transfer [20,34], packing
[29,31], lot sizing [1], metrical task systems [9,42] or graph theory
[17,32,35]. To the best of our knowledge, there have been no
attempts to formalize different degrees of available information in
a general framework. A reason for the lack of general concepts lies
in the different possibilities to deal with temporal aspects [30].
When only the order of input element releases matters, time is
already modeled implicitly through the indices of σ1;σ2;… On the
other hand, when time durations play a role, time aspects have to
be modeled explicitly as part of the data belonging to σ1;σ2;…,
e.g., in the form of release times t1; t2;… This issue also accounts
for various perceptions of lookahead along with its implied pro-
cessing characteristics.

1.1. Lookahead and related concepts for uncertainty

The idea of online optimization with lookahead is based on
known deterministic information previews, and hence it can be
distinguished from other approaches for optimization under
incomplete information or uncertainty. In stochastic programming
[12], probability distributions for scenarios that take into account all
uncertain factors (often in form of parameters) are known and
solution quality is typically evaluated by average-case measures to
immunize the solution probabilistically to incomplete information.
In addition, stochastic programming is rather concerned with
sporadic than with frequent decision making. Scenarios are often
coined by the realization of parameter values which are considered

to be some random variable. Online optimization differs from this
approach strongly since it is not focused on scenarios and/or
parameters, but rather on the realizations of input elements for
which no stochastic principles are known to hold. Dynamic pro-
gramming [8] assumes that an optimization problem exhibits the
property of optimal substructures (i.e., an optimal solution is
composed of optimal solutions to subproblems) and the property of
overlapping subproblems (i.e., the overall problem can be broken
down into several subproblems of the same type whose solutions
can be composed to obtain an overall solution). Clearly, both
properties are not fulfilled in general in the online versions of
combinatorial optimization problems. Moreover, many online pro-
blems involve time considerations such as input element release
times. Therefore, it is impossible to subdivide the overall problem
into several discrete stages. To apply the theory of dynamic pro-
gramming, we therefore need a fixed time horizon in order to
determine an optimal solution. In online optimization, the end of
the input sequence is not known and decisions are made in an
exclusively forward-moving rolling time horizon. The time horizon
T in dynamic programming is the number of periods for which the
planning shall be conducted, and between periods 1 and T all
possible realizations in the respective periods are considered.
Conceptually different, lookahead in online optimization only takes
into account the actual upcoming realizations (known due to some
lookahead device) and not all possible realizations. Finally, the goal
in dynamic programming is different than in online optimization: in
dynamic programming we are looking for an optimal strategy for
given horizon, state space, action space, state transition and reward
function which all are known in advance; in online optimization,
we usually already have a strategy in form of an algorithm and want
to check its behavior in the online setting. Nonetheless, it is possible
to emulate the behavior of an online algorithm by means of a
Markov chain (cf. also [22]). However, this approach is very
unhandy and leads to computational issues even for small problem
instances. We also note that the setup of a Markov decision process
[49] is different from online optimization: state transitions occur
probabilistically once a control action has been chosen, whereas in
our setting they occur deterministically based on an algorithm's
deterministic decision. Markov decision processes are used as a
modeling formalism to determine an optimal strategy, i.e., the
decisions of an optimal algorithm with respect to some expected
objective value, using dynamic programming. Stochastic assump-
tions concerning transition probabilities depending on the control
action are given a priori: pðs; a; s0Þ with s; s0AS and aAA is the
probability that the successor state of s is s0 if action a is chosen. In
contrast to this, our analysis merely intends to evaluate the quality
of a given algorithm in a setting of complete nescience of stochastic
information. In particular, it is not possible to find an optimal
algorithm because the end of the horizon is unknown. The field of
model predictive control [15] deals with finding the optimal control
of complex dynamic systems. This idea is similar to that of online
optimization with lookahead. However, the setting in model pre-
dictive control is relatively clear marked out by relations between
dependent and independent variables in a corresponding process
model. This is also why this technique is mainly used in the context
of process industries, but not in the field of combinatorial online
optimization. Robust optimization [11] does not rely on probability
distributions but on a given range of possible values for uncertain
factors. The goal is to construct a solution which is feasible for all
possible realizations and exhibits optimality in some robustness-
related sense. In online optimization with lookahead, there is no
need for forecasts and probabilities, and subproblems are compu-
tationally easy because of their limited size. From this discussionwe
see that the concept of “lookahead” is seen from quite a number of
different perspectives.

Fig. 1. Hierarchical relation between operations and control of a dynamic system
and online optimization with lookahead.
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