

Available online at www.sciencedirect.com

Fuzzy Sets and Systems 155 (2005) 459-463

www.elsevier.com/locate/fss

An answer to an open problem on triangular norms

Funda Karaçal

Department of Mathematics, Karadeniz Technical University, 61080 Trabzon, Turkey

Received 25 February 2005; received in revised form 15 April 2005; accepted 19 April 2005 Available online 23 May 2005

Abstract

In this paper, we shall give an answer to show that an open problem, which is collected by Klement et al. in "Problems on triangular norms and related operators" [Fuzzy Sets and Systems 145 (2004) 471–479], has a negative solution.

© 2005 Elsevier B.V. All rights reserved.

Keywords: Triangular norms; Conditionally cancellative t-norms; Archimedean t-norms

1. Introduction

The following problem was posed by Pap [7].

Problem 1. Let T be a cancellative t-norm which is continuous at the point (1,1). Is T necessarily continuous?

A negative answer was given by Budinčević and Kurilić [1]. Moreover, there are non-continuous cancellative t-norms which are left-continuous [8]. On the other hand, for an Archimedean t-norm, its left-continuity is equivalent to its continuity [6].

In [4] several open problems on triangular norms and related operators were collected, which were raised during the 24th Linz seminar on fuzzy theory "Triangular norms and related operators in many-valued logics" held in February 2003. Two of them are stated as follows:

E-mail address: fkaracal@yahoo.com.

^{0165-0114/\$ -} see front matter 0 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.fss.2005.04.017

Problem 2. Let *T* be a conditionally cancellative t-norm which is continuous at the point (1,1) and with zero divisors. Is *T* necessarily continuous?

Problem 3. Let T be a conditionally cancellative left-continuous t-norm which has zero divisors. Is T necessarily continuous?

In Section 2, we answer Problem 2.

Note that, for t-norms without zero divisors, Problem 2 is exactly the solved Problem 1 [1]. There are examples of non-continuous cancellative t-norms which are left continuous. One example for this is the following [8]: we recall that each $(x, y) \in (0, 1]^2$ is in a one-to-one correspondence with a pair $((x_n)_{n \in N}, (y_n)_{n \in N})$ of strictly increasing sequences of natural numbers given by the unique infinite dyadic representations

$$x = \sum_{n=1}^{\infty} \frac{1}{2^{x_n}}$$
 and $y = \sum_{n=1}^{\infty} \frac{1}{2^{y_n}}$

of the numbers x and y, respectively. Using this notion, then the function $T:[0, 1] \times [0, 1] \rightarrow [0, 1]$ given by

$$T(x, y) = \begin{cases} \sum_{n=1}^{\infty} \frac{1}{2^{x_n + y_n - n}} & \text{if } (x, y) \in (0, 1]^2, \\ 0 & \text{otherwise,} \end{cases}$$

is a t-norm which is cancellative (thus without zero divisors), left continuous on $[0, 1]^2$, but discontinuous in each point $(x, y) \in (0, 1)^2$, where at least one coordinate is a dyadic rational number.

For basic notions and properties we refer the reader to Refs. [3,5].

Definition 1. A triangular norm (briefly t-norm) is a binary operation *T* on the unit interval [0, 1] which is commutative, associative, non-decreasing and has 1 as neutral element, i.e., it is a function $T: [0, 1] \times [0, 1] \rightarrow [0, 1]$ such that for all $x, y, z \in [0, 1]$:

(T1) T(x, y) = T(y, x), (T2) T(x, T(y, z)) = T(T(x, y), z), (T3) $T(x, y) \leq T(x, z)$ whenever $y \leq z$, (T4) T(x, 1) = x.

Remark 1. Let *T* be a t-norm. Then the conditions (T3) and (T4) in Definition 1 imply that $T(x, y) \le x \land y$, where $x \land y := \min(x, y)$.

Definition 2. A t-norm T is called conditionally cancellative if the equality T(x, y) = T(x, z) > 0 implies y = z.

Download English Version:

https://daneshyari.com/en/article/10324049

Download Persian Version:

https://daneshyari.com/article/10324049

Daneshyari.com