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In this paper we consider the lot-sizing problem with backlogging under stepwise transportation costs.
Inventory is carried over or backlogged in a trade-off with costs for production setup and transportation.
Specifically, inventory is the main source for consolidating demand over periods to increase the chance
of Full-Truck-Load (FTL) delivery. We assume that there are no speculative motives in production, which
yields an important property for Less-Than-Load (LTL) delivery that the LTL cargo does not contain any
unit carried over from the previous period or backlogged for the next period. We solve the problem in
two phases. In phase one, we use a geometric technique to preprocess necessary functional values for
FTL delivery. In phase two, we provide a residual zoning algorithm, involving not only FTL delivery but
also LTL delivery, to obtain an optimal solution. The computational complexity is shown to be O(T? log T)

where T is the length of the planning horizon.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider a lot-sizing problem for deterministic
multi-period production and transportation planning, which we
call the lot-sizing problem with production and transportation
(LSPT). Item units, which are produced with setup and per-unit
costs, are contained in the cargo that is transported by truck or
railroad. Transportation cost is charged by cargo, which leads to a
stepwise transportation cost structure.

To provide a context for the LSPT, we consider a division of a
global company with several production sites and distribution
centers around the world. The division is in charge of a facility
producing a single item and a distribution center facing the
deterministic demand of a local region. The consideration of
production, inventory and transportation is crucial for effective
decision-making. The company manages production and inventory
internally; on behalf of the company, independent carriers trans-
port items from the production facility to the warehouse in the
distribution center. Therefore, because the per-unit delivery cost of
cargo depends on the independent carrier chosen in a given
period, this cost may vary over periods.
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In traditional inventory management literature, inventory—
including backlogged demand—accrues in a trade-off with produc-
tion setup cost. In this study, inventory is also used for the source
of demand consolidation over periods, whereby we can increase
the amount of item units in a single delivery, reducing transporta-
tion costs [10]. As a consequence, we maintain inventory in a
trade-off with the production setup and cargo delivery costs. There
is no other reason for maintaining inventory, i.e., no speculative
motive prevalent in the oil market, for example, which fosters
keeping oil on hand in anticipation of rising prices.

Lippman [12] introduced the lot-sizing problem with multiple
setups to model the stepwise cost, thereby incurring a setup cost
each time a new cargo is created. The research extending Lipp-
man's model includes Pochet and Wolsey [13] and Van Vyve [17].
In addition to the stepwise cost, Van Vyve [17] also considered the
maximum bound on the number of cargos that can be used in each
period. When only one cargo is allowed in each period, the
problem reduces to the classical capacitated lot-sizing problem
[6,4,16]. The research in this direction is reviewed by Karimi et al.
|7] for the single and multi-item capacitated problems and by
Robinson et al. [14]| for the multi-item capacitated problem
involving joint setups. Efficient heuristic approaches are proposed
by Chen [3] for a generalized multi-level capacitated lot-sizing
problems including setup carry-overs.

To deal with not only the stepwise transportation cost but also
the setup cost in production, Lee [9] first proposed the LSPT
problem and Lee et al. [10] solved the problem with backlogging
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and outbound transportation. Li et al. [11] and Hwang [8] pre-
sented improved algorithms for the LSPT problem that allows
backlogging. Recently, Akbalik and Rapine [2] solved the LSPT
problem with the bound on the number of cargos in the case
where backlogging is not allowed.

The LSPT problem in this paper assumes production cost
without speculative motives, a nonspeculative cost structure.
(Section 2.1 gives the precise definition for the nonspeculative
cost structure.) The objective of this paper is to provide an
O(T? log T) algorithm for the LSPT problem with the nonspecula-
tive cost structure improving upon the O(T?) algorithm in Hwang
[8], where T is the length of the planning horizon.

Algorithms for lot-sizing problems have been continuously
improved since the introduction of the uncapacitated lot-sizing
problem [19]. Important improvements were made by Federgruen
and Tzur [5], Wagelmans et al. [ 18] and Aggarwal and Park [1]. One
interesting improvement method is the geometric technique,
which constructs and updates at each iteration the envelope
(convex hull) of points in a two-dimensional space of period and
cost; and at the end of the iteration, the extreme points of the
convex hull yield a production plan. Similar to the envelope of
points approach, another equivalent technique using the envelope
of lines (linear functions) is formalized in van Hoesel et al. [15].

Most lot-sizing problems involving capacity are solved first by
decomposition into subproblems, and then determining the opti-
mal solution. We refer to the sequential steps as phases. That is, in
phase one, we obtain the minimum values of the subproblems; in
phase two, we compute an optimal solution for the entire problem
using the values of the subproblems. For efficiency in solving the
subproblems, the geometric technique of linear functions will be
applied in phase one. Although this geometric technique is quite
useful for subproblems, it seems less so for solving the entire
problem. To obtain the improved O(T? log T) algorithm, we pro-
pose a new technique called the residual zoning algorithm in
phase two.

In the next section, we present the notation and problem
formulations with basic optimality properties. Section 3 intro-
duces the value functions and overall approach for the optimal
algorithm. In Section 4, we describe phase one, which is to obtain
functional values using the geometric technique. Phase two for our
main algorithm with the residual zoning procedure is presented in
Section 5. In Section 6, we will review the algorithm and offer the
managerial insights behind its optimality properties, and future
possible extensions.

2. Preliminaries
2.1. Problem formulation

As in the previous section, we assume a division of a global
company in charge of a production facility and a distribution
center, which faces demand d; over periods t =1, ..., T. Produced
units in the facility are delivered via truck or railroad to the
distribution center in cargo of capacity C, the maximum amount of
product units that can be contained. For expositional simplicity,
we assume that the demand di,...,dr and the capacity C are
integral values. It should not be difficult, however, to see that the
algorithm could be applied to non-integral values as well. The
production cost function in period t consists of the fixed setup cost
K, and the per-unit cost p, As transportation is served by
independent carriers, the transportation cost can vary over time:
each delivery of a cargo costs W, in period t. The leftover items in
period t incur a holding cost h, per unit and the backlogged items
are imputed with backlogging cost b, per unit.

A production and transportation plan is specified by x; and I for
t=1,...,T where x; denotes the production and transportation
level and I, denotes the inventory level in period t. Let I; =I," — I
where I;* > 0 denotes the carried-over level and I; > 0 the back-
logged level at the end of period t. From the definitions of I;" and
I7, it is obvious that I - I;7 = 0. (Rigorous reasons for this can be
given from Proposition 1.) We use y, to indicate whether or not
production occurs in period t; it takes the value 1 if production
occurs, and 0 otherwise.

Regarding the cost associated with cargo capacity, we use [x]
and |x] to denote the minimum integer no less than x and the
maximum integer no greater than x, respectively. The production
and transportation cost for x; > 0 units in period t is then given as
follows:

Pe(X¢) = peXe + [x: /CIWe.

The production cost function in this study is assumed non-
speculative which means that

pi—be<pi 1 <p+h fort=12,.. T-1. 1

Under the condition (1), we see that the unit cost of an item
produced in the present period t is no larger than that of an item
carried-over (p; <p;_1+hs_1) and that of an item backlogged
(D¢ < D41 +be). Therefore, with the per-unit production and inven-
tory costs satisfying the nonspeculative condition, we have no
reason to hold stock and to backlog demand; the only reason that
we Kkeep stock is in a trade-off with (high) setup cost or
transportation cost.

For facilitating arguments throughout the paper, we provide
useful terms especially for handling cumulative quantities:

® d,; denotes the sum of demands ds,ds 1, ...,d;, ie., ds; =ds+
ds, 1+---+d;. In an analogous way, we define x;; to denote the
sum of productions during [s, t], i.e., Xsr = Xs +Xs 1 1 + - + X

® b, and hs; denote the sum of per-unit backlogging and holding
costs in periods s,s+1,...,t, respectively. That is, bs; = bs+
b 1+--+br and hsy = hs+hs, 1+ -+ he.

All values ds;, bs and hg are set to zero if s > t. For instance, we let
ds¢ =0 if s>t. With the notation developed, the problem is
formulated as follows:

(LSPT) min XT: (Keye+Pe(x)+helF + bl (2a)
t=1
subject to
I =T D+xe=de+df —I7), t=1,...T (2b)
I =lg=If =17 =0, (20)
y,e{0,1), t=1,...T, d)
x>0, I7>0, I7 >0, t=1,....T. (2e)

The objective is to find a production and transportation plan
minimizing the setup, production and transportation and inven-
tory costs as described in (2a). The over- or under-production of
each period is balanced out by inventory (Egs. (2b)). We assume
that the inventory level at the start and at the end of the horizon is
zero (Eqgs. (2c)). With the assumption that d;, t=1,...,T and C are
integers, we can always assume an integral production and
transportation plan; i.e., x, and I, are all nonnegative integers
(see Proposition 2 in Section 2.2).

If x; > 0 we call period t a production and transportation period,
or just a production period in short. Furthermore, if the amount of
production in period t is a multiple of cargo capacity, we call it an
FTL (Full-Truck-Load) production (and transportation) period. On
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