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ABSTRACT

Datasets with significantly larger number of features, compared to samples, pose a serious challenge in
supervised learning. Such datasets arise in various areas including business analytics. In this paper, a
new binary classification method called constrained subspace classifier (CSC) is proposed for such high
dimensional datasets. CSC improves on an earlier proposed classification method called local subspace
classifier (LSC) by accounting for the relative angle between subspaces while approximating the classes
with individual subspaces. CSC is formulated as an optimization problem and can be solved by an
efficient alternating optimization technique. Classification performance is tested in publicly available
datasets. The improvement in classification accuracy over LSC shows the importance of considering the
relative angle between the subspaces while approximating the classes. Additionally, CSC appears to be a
robust classifier, compared to traditional two step methods that perform feature selection and

classification in two distinct steps.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

High dimensional datasets are currently prevalent in many
business applications. The methodical collection of every facet of
the data has lead to a significant increase in its dimensionality.
Examples include but are not limited to financial services [43], e-
commerce [12] and marketing [32]. Other examples of datasets
with a high number of features are shown in Table 1.

Classification tasks on high dimensional datasets pose significant
challenges to the standard statistical methods and render many
existing classification techniques impractical [22]. The generalization
ability of many classification algorithms is compromised due to curse
of dimensionality arising from high number of features of the input
space [26]. Earlier studies have revealed the geometrical distortion
that arises in high dimensional data spaces, where the ratio of
distances between the farthest and nearest neighbors to a given target
is almost equal to 1 for a wide variety of data distributions and
distance functions [4]. Moreover, several statistical methods require
knowing class covariances a priori. In the case that class covariances
are unavailable, such estimates from sample data would be unreliable
due to small sample sizes. One common approach to address the
aforementioned challenges involves reducing the dimensionality of
the dataset either by using feature extraction [29]| and/or feature
selection prior to classification [34,8].
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Feature selection is usually performed in different ways through
filter, wrapper, and embedded methods. Filter methods access features
during a separate process prior to classification. Variables are given a
score according to a filtering function and are ordered accordingly.
Features with the lowest scores are discarded while the rest are used
from the classifier. Hypothesis testing and statistic tests such as t-test
have also been used as filtering procedures [17]. Wrapper methods on
the other hand use the classifier structure itself to evaluate the
importance of features based on the idea that the classifier can provide
a better estimate of accuracy than a separate independent process [G].
The main drawback of wrapper methods is that increased computa-
tional power is often required since the classification process has to
be repeated for each feature set considered. Metaheuristics used for
feature selection can also be classified as wrapper methods [40,30,47].
Embedded methods perform feature selection in a way so that the
classification algorithm is executed while variables are evaluated and
selected. Examples include the weighting of features in support vector
machines [18], where the authors developed the SVM method of
recursive feature elimination for feature selection, and the use of
random forests for feature evaluation [21]. In the later, feature elimina-
tion occurs for the attributes with the lowest raw importance score.

Feature extraction techniques transform the input data into a
set of meta-features that extract the relevant information from the
input data for classification. One popular technique called principal
component analysis (PCA) finds a set of linearly uncorrelated
variables called principal components from a set of observations
of possibly correlated variables [23,36]. PCA removes redundancy
by transforming the data from a higher dimensional space into an
orthogonal lower dimensional space. This transformation is
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Table 1
Examples of high dimensional datasets.

Dataset Reference
Customer relationship management data [39]
Covariation information of stocks [7]

Text datasets for classification [20]

Data collected from surveys [2]

Netflix dataset [3]

MRI data [24]

Mass spectroscopy data [14]

performed in a way that the first principal component captures as
much variation in the data as possible, and each succeeding
component accounts for a decreasing amount of variance [42].
The number of retained principal components is usually less than
or equal to the number of original variables and are determined
using several criteria like the eigenvalue-one criterion, scree test
and proportion of variance accounted for.

The aforementioned dimensionality reduction techniques
decrease the complexity of the classification model and attempt
to improve the classification performance [34]. The choice of the
dimensionality reduction technique depends on the nature (e.g.
level of correlation, presence of outliers) of the data that is used
for classification.

Local subspace classifier (LSC) utilizes PCA to perform classifica-
tion. During the training phase, a lower dimensional subspace is
found for each class that approximates the data [27]. In the testing
phase, a new data point is classified by calculating the distance of
the point to each subspace and choosing the class with minimal
distance. Although LSC is simple and relatively easy to implement,
it has its own limitations. LSC finds the subspaces for each class
separately without the knowledge of the presence of the other
class. While each subspace approximates the data well, however
these projections may not be ideal from a classification perspec-
tive. In this paper, we construct another classifier called con-
strained subspace classifier (CSC) which expands LSC by including
the relative orientation of the subspaces of two classes in an
integrated optimization model. LSC formulation is modified to
include the relative angle between the subspaces and is solved
efficiently using alternating optimization techniques. The perfor-
mance of CSC on publicly available datasets is evaluated and
compared with LSC and other classifiers.

The remainder of the paper is organized as follows. Section 2 gives
an introduction to LSC and Section 3 introduces the CSC. In Section 4
we demonstrate a first comparison on a toy dataset whereas in
Section 5 we present the computational experiment on six real
datasets along with their discussion as well as we provide the
comparative computational results for CSC against support vector
machine (SVM), PCA/SVM and Naive Bayes classifier. Lastly, in Section
6 we discus potential future extensions of this algorithm.

2. Local subspace classifier

Consider a binary classification problem. Let the matrices
X1 e RP*™ and X, e RP*! be given, whose columns represent the
training examples of two classes C; and C, respectively. The
number of samples in C; and C, are given by m and n respectively.
The number of features is given by p. Local subspace classifier
attempts to find two subspaces separately, one for each class that
best approximates the data. Let U;=[u{",uy", . u"],, and
U, :[u(z),u(zz),...,u;f)]pxk represent orthonormal bases of two k-
dimensional linear subspaces S; and S, that approximate classes
C; and C, respectively. We assume the dimensionality of subspaces
S1 and S, to be same and equal to k without loss of generality. Sy
and S, attempt to capture maximal variance in classes C; and C,

respectively by optimizing the following optimization problems:

maximize tr(Ux,xTU))
U, e RP*K

subject to UTU; =1, )]

where I, is the identity matrix of size k.

The solution to the optimization problem (1) is given by
eigenvectors corresponding to the k largest eigenvalues of matrix
X1xT [15]. Similarly, the following optimization problem is solved
to obtain the orthonormal basis U, representing S,:
maximize tr(Ulx,X%U,)

U, e RP*K
subject to ULU, =1, )

The orthonormal basis U, is obtained by choosing eigenvectors
corresponding to the k largest eigenvalues of matrix X,X7. A new
point x is classified by computing its distance from subspaces S;
and S5:

dist(x, S;) = tr(UT xx"U;) 3)
and the class of x is determined as

class(x) = arg ig}%g}{dist(x, S} 4)

Though the subspaces S; and S, approximate the classes well,
these projections may not be ideal for classification tasks as each of
them are obtained without the knowledge of another class/sub-
space. Hence, from a classification performance perspective, these
subspaces may not be the best projections for the classes. In order
to account for the presence of another subspace, we consider the
relative orientation of the subspaces.

3. Constrained subspace classifier

Constrained subspace classifier finds two subspaces simulta-
neously, one for each class, such that each subspace accounts for
maximal variance in the data in the presence of the other class/
subspace. Thus, CSC allows for a tradeoff between approximating
the classes well and the relative orientation among the subspaces.
The relative orientation between subspaces is generally defined as
principal angles [19]. We briefly review principal angles between
subspaces below, which are further utilized to modify the for-
mulation of LSC to include the relative orientation among the
subspaces.

Definition 1. Let U; e RP*¥ and U, e RP*¥ be two orthonormal
matrices spanning subspaces S; and S,. The principal angles
0<61<6,<03<--<6,<m/2 between subspaces S; and S,
are defined recursively by

05 = 1 2, o
subjectto X)X, =1, y,y,=1 form=n

X %, =0, yly,=0 form#n

vm,n=1,2,....k. (5)

where x,, and y,, are the column vectors of U; and U, respectively.
Intuitively, the first principal angle 6, is the smallest angle
between all pairs of unit vectors in the first and second subspaces.
The rest of the principal angles are similarly defined.

Theorem 1. Let U; e RP** and U, e RP*¥ be rectangular matrices
whose column vectors span the subspaces S;eRF and S, e RK
respectively. Let M = U U, € R¥*X, using singular value decomposi-
tion we can express M by

M=YCZT (6)

where Y'Y =1, Z" Z=1, and C = diag(c, 02, ..., 6¢).



Download English Version:

https://daneshyari.com/en/article/1032452

Download Persian Version:

https://daneshyari.com/article/1032452

Daneshyari.com


https://daneshyari.com/en/article/1032452
https://daneshyari.com/article/1032452
https://daneshyari.com

