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a b s t r a c t

The recent advent of smart meters has led to large micro-level datasets. For the first time, the electricity
consumption at individual sites is available on a near real-time basis. Efficient management of energy
resources, electric utilities, and transmission grids, can be greatly facilitated by harnessing the potential
of this data. The aim of this study is to generate probability density estimates for consumption recorded
by individual smart meters. Such estimates can assist decision making by helping consumers identify
and minimize their excess electricity usage, especially during peak times. For suppliers, these estimates
can be used to devise innovative time-of-use pricing strategies aimed at their target consumers. We
consider methods based on conditional kernel density (CKD) estimation with the incorporation of a
decay parameter. The methods capture the seasonality in consumption, and enable a nonparametric
estimation of its conditional density. Using 8 months of half-hourly data for 1000 meters we evaluate
point and density forecasts, for lead times ranging from one half-hour up to a week ahead. We find that
the kernel-based methods outperform a simple benchmark method that does not account for
seasonality, and compare well with an exponential smoothing method that we use as a sophisticated
benchmark. To gauge the financial impact, we use density estimates of consumption to derive prediction
intervals of electricity cost for different time-of-use tariffs. We show that a simple strategy of switching
between different tariffs, based on a comparison of cost densities, delivers significant cost savings for the
great majority of consumers.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A smart meter is an electronic device that measures electricity
consumption at the installed facility, and transmits this informa-
tion to the consumer and the energy supplier/operator on a near
real-time basis. It is anticipated that based on smart meter
information, significant energy and financial savings can be
achieved through detailed consumer feedback and tariffs designed
for facilitating energy savings [1,2]. The large scale installations of
smart meters will generate massive amounts of data, offering
unique insight into the consumption behavior of different con-
sumers. Over the coming years, smart meters are scheduled to
replace the existing electronic meters. It is estimated that by 2019,
approximately 60 million meters will be installed and operable in
the United States [3]. In the European Union, all member states
must have smart meters installed for at least 80% of consumers by
2020, with full deployment by 2022 [4]. It has been estimated that

the cost of investment in smart electricity grids in the European
Union will be around €51 billion [5].

Unlike conventional meters, smart meters provide site-specific
information regarding electricity consumption throughout the day.
This information can potentially change the landscape of energy
markets, by allowing suppliers to make highly data-dependent
decisions to develop innovative dynamic pricing strategies for
their target consumers. Smart meters, along with different time-
of-use (TOU) tariffs, can help consumers shift their consumption
away from peak hours, which can result in significant savings [6].
With the liberalization of electricity markets, market participants
rely on accurate forecasts to make informed energy transactions
[7]. Also, smart meters can assist electricity scheduling, thereby
facilitating safe and efficient operation of the power system.

In a recent trial involving electricity smart meter installations
in Ireland, the deployment of TOU tariffs and information stimuli,
such as bi-monthly billing and an in-home display device, resulted
in an overall reduction in electricity usage by 3.2% and peak usage
by 11.3% [1,2]. Given the potential for smart meters in enabling the
efficient use of energy, and its financial implications for energy
markets, it is imperative to develop accurate methods for model-
ing electricity smart meter data. This is the focus of this paper.
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Electricity consumption data from individual smart meters
exhibits seasonality, comprising both intraday and intraweek
cycles, and in comparison with total national demand, consump-
tion recorded from individual smart meters exhibits much higher
variability. It, therefore, seems appropriate to provide a forecast of
the probability density function for consumption recorded by a
smart meter, rather than just producing a point forecast. Focusing
on the density forecasts of electricity consumption from smart
meters can help (a) ensure that the risk associated with complex
decision making based on such forecasts is adequately assessed,
and, (b) generate accurate consumption estimates at varying
aggregation levels, potentially resulting in improved demand side
management. The literature on modeling electricity smart meter
data is small. There are some recent papers on short-term point
forecasting of smart meter data [8,9], and forecast error measures
[10]. However, we are not aware of existing studies on modeling
the density of electricity consumption data from individual smart
meters.

The non-Gaussian and highly variable nature of individual
smart meter electricity consumption data motivates nonpara-
metric probability density estimation methods. In this study, we
propose methods based on kernel density (KD) and conditional
kernel density (CKD) estimation (see, for example, [11,12]). The
conditioning in our CKD implementations aims to capture season-
ality. Although this seasonality is usually far less clear than the
seasonality in a series of the total electricity demand for a country,
both types of data tend to exhibit intraday and intraweek seasonal
cycles. This prompts us to consider forms of KD and CKD that are
inspired by the structure of models presented in the literature for
total national consumption, namely the exponential smoothing
and autoregressive moving average (ARMA) models presented by
Taylor [13,14] and Gould et al. [15]. The CKD method involves
kernel weighting over the conditioning variable. We consider
different implementations of the CKD estimator, where we condi-
tion consumption on the period of week, period of day, and lagged
consumption. We chose methods based on KD and CKD estimation
for modeling smart meter data, because these methods (a) model
the full density function, (b) can accommodate seasonality in the
time series, and, (c) make no distributional assumption for the
shape of the density, allowing the estimated density to be, for
example, multi-modal, fat-tailed or skewed. The incorporation of a
decay factor within the CKD estimation helps model temporal
evolution in the relationship between consumption and the
conditioning variables.

This paper employs 8 months of half-hourly data, recorded
from 1000 smart meters, to evaluate the KD and CKD methods, in
terms of accuracy of their density, quantile, and point forecasts, for
lead times ranging from one half-hour up to 1 week ahead.

Although weather variables are often used in energy modeling
[16], the KD and CKD methods that we propose use only the
historical consumption observations. We felt that we could not
assume the availability and affordability of weather predictions for
a location reasonably close to each smart meter. Furthermore, the
use of weather data in a large-scale online prediction system raises
issues of robustness [17].

Recent advances in smart metering technology may pave the
way for easy switching between suppliers, and between different
payment schemes from the same supplier [18]. In this study, we
use our density estimates of electricity consumption to derive
prediction intervals for electricity cost, for different TOU tariffs. We
compare different costs that would potentially be incurred in the
future, for each available tariff, and select the tariff that would
result in the greatest cost savings. In a case study of a warehouse
environment, Sanders and Graman [19] emphasize the importance
of evaluating the impact of forecast errors on organizational cost.

In Section 2, we describe the smart meter data. Section 3
presents different KD and CKD methods, along with an exponen-
tial smoothing benchmark method. Empirical results regarding
forecast accuracy are provided in Section 4. Section 5 derives
prediction intervals for electricity cost. Section 6 summarizes and
concludes the paper.

2. Smart meter data

We used 8 months of half-hourly smart meter data for
electricity consumption from 2 January to 31 August 2010. We
used the first 7 months, comprising 10,128 observations (in-
sample), for optimizing method parameters, while the final month,
constituting 1488 observations (post-sample), was used to evaluate
forecast accuracy. The final month of the in-sample period was
used for cross-validation. Using a moving window of 6 months, we
generated a sequence of density forecasts, for lead-times ranging
from one half-hour up to 1 week ahead, by using as forecast origin
each midnight in the post-sample data. The data was recorded for
800 residential consumers and 200 small to medium-sized enter-
prises (SMEs). The data was obtained from the Commission for
Energy Regulation (CER) based in Ireland [1,2]. Figs. 1 and 2 show
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Fig. 1. Consumption for a residential consumer for (a) the full 8 months and (b) a typical three-week period.
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