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a b s t r a c t

Multi-objective combinatorial optimization (MOCO) problems, apart from being notoriously difficult and
complex to solve in reasonable computational time, they also exhibit high levels of instability in their
results in case of uncertainty, which often deviate far from optimality. In this work we propose an
integrated methodology to measure and analyze the robustness of MOCO problems, and more
specifically multi-objective integer programming ones, given the imperfect knowledge of their para-
meters. We propose measures to assess the robustness of each specific Pareto optimal solution (POS), as
well as the robustness of the entire Pareto set (PS) as a whole. The approach builds upon a synergy of
Monte Carlo simulation and multi-objective optimization, using the augmented ε-constraint method to
generate the exact PS for the MOCO problems under examination. The usability of the proposed
framework is justified through the identification of the most robust areas of the Pareto front, and the
characterization of every POS with a robustness index. This index indicates a degree of certainty that a
specific POS sustains its efficiency. The proposed methodology communicates in an illustrative way the
robustness information to managers/decision makers and provides themwith an additional supplement/
tool to guide and support their final decision. Numerical examples focusing on a multi-objective
knapsack problem and an application to academic capital budgeting problem for project selection, are
provided to verify the efficacy and added value of the methodology.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Imperfect knowledge of the exact value of parameters, which
comprises imprecision, ill-determination, and uncertainty (see [25]), is
currently a major issue in mathematical programming. The obtained
optimal solutions can exhibit remarkable instability and high vulner-
ability/volatility to changes in the values of the parameters of the
problem, often rendering therefore a computed solution significantly
suboptimal or not adequate for further implementation, (Bertsimas
et al., [6]; Roy [24]; Ben-Tal et al., [3], etc). Therefore, the concept of
robustness in mathematical programming has drawn the attention of
the scientific community in this field and is usually set under the
umbrella of “robust optimization” [3]. In a more or less informal way,
by using the term “robustness” we actually mean that there exists

some kind of imperfect knowledge in the model parameters and we
examine ways and tools to stay “at the safe side” and safeguard
decision making.

The degree to which a solution is stable to the underlying
uncertainties within a model is usually defined as robustness. The
concept of “robust optimization” in Operational Research was
introduced by Soyster [27] but it was not until the last 20 years
that it flourished and gathered the attention of the scientific
community, mainly with the works by Mulvey et al. [21], Ben-Tal
and Nemirovski [1,2] and Bertsimas and Sim [4,5]. Recently,
Soyster and Murphy [28] also studied the concept of duality in
robust optimization using linear programming. The concept of
robustness in integer programming applications, such as product
design has been studied by Wang and Curry [31], while Sawik [26]
proposed a robustness approach for the supply chain problem. The
reader is prompted to see Bertsimas et al. [6] and Gabrel et al. [12]
for recent reviews on the subject.

Although robustness has been extensively studied in single
objective mathematical programming problems, in the case of
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multi-objective optimization (MOO) several aspects remain to be
explored. Kouvelis and Yu [15] in their seminal textbook devote a
section to robustness and efficiency. A decade later, Deb and Gupta
[7] introduced the concept of robustness in MOO using meta-
heuristics. Some recent works also deal with robustness and MOO,
for instance Zhen and Chang [32], where robustness is quantified
and used as an additional objective function in a berth allocation
problem. Roland et al. [22] provide a stability radius for the Pareto
optimal solutions in multi-objective combinatorial problems. Roy
[24] discusses the “multi-faceted” issue of robustness in the
general context of operational research and not only in optimiza-
tion. He initiates “robustness concern” and proposes a whole set of
processes and actions when model parameters are imperfectly
defined (p. 630). A concept of robustness in MOO was also
introduced by Figueira et al. [10], especially in the case of
interactive multi-objective optimization. Mavrotas et al. [20] have
examined and analyzed the robustness of the most preferred
efficient solution in MOO problems. Two recent works associated
with robustness in multi-objective optimization are also worth
mentioning: Ehrgott et al. [8] in a recent paper deal with the
minmax approach of robustness, and Fliege and Werner [11]
focused on robustness in a multi-objective context of portfolio
selection.

In this paper we study the concept of robustness in multi-
objective programming and especially in the generation (a poster-
iori) methods. These methods result in the generation of the
whole set of efficient solutions (Pareto set) that includes all the
Pareto optimal solutions (POS). The question that we attempt to
answer in this paper is “How robust is the obtained Pareto set and
the individual Pareto optimal solutions in the occurrence of
changes or perturbations in model parameters?”. We restrict our
study to multi-objective combinatorial optimization (MOCO) pro-
blems, which, in their majority, concern multi-objective integer
programming (MOIP) problems.

In our work we attempt to measure the robustness of POS,
when uncertainty occurs by imprecision of the model’s para-
meters. For this task we design an integrated methodology that
can be applied in multi-objective discrete and combinatorial
problems, using a combination of Monte Carlo simulation and
optimization [30]. It must be noted that our approach does not
constitute a sensitivity analysis over the results, where the
instability of a single parameter is examined at a time. On the
contrary, the use of Monte Carlo simulation, in SMAA method for
instance [14], enables us to simultaneously alter the values of a
number of parameters in a systematic way and extract holistic
conclusions with respect to the robustness of the obtained
solutions.

It is worth mentioning that Monte Carlo simulation has been
also used for robustness analysis in multi-objective programming
in the work of Mavrotas et al. [20]. However, in that work they
studied the robustness of one specific Pareto optimal solution
(most preferred solution) in relation to the preference parameters
(weights) and not the robustness of the entire Pareto set in
relation to the whole entity of the model’s parameters. Since we
are not practicing an exact method, but a simulation instead, we
can refer to a pseudo-robustness analysis. Hereafter, we shall use
the term robustness analysis, but we refer to a pseudo robustness
analysis according to the terminology by Roy [23].

We denote as “reference Pareto set” the initial set of efficient
solutions, the robustness of which we want to measure. In the
proposed methodology we use Monte Carlo simulation in combi-
nation with the enhanced version of the ε-constraint generation
method (AUGMECON2) that produces the exact Pareto set for
MOIP problems [19]. Subsequently, we measure how many times a
specific POS of the reference Pareto set is produced across the n
Monte Carlo iterations. The higher the frequency, the more robust

is the specific POS, since it exhibits a higher tendency to sustain its
optimality. Consequently, besides the information regarding the
performance of a POS to the criteria (objectives functions), we can
provide the decision maker (DM) with an additional piece of post
optimality information, namely the robustness measurements
associated with perturbations in the model’s parameters. A non-
robust POS (i.e., it displays small appearance frequency in the
Monte Carlo simulation–optimization process), signifies that it can
be easily dominated by other solutions, when small perturbations
in the model’s parameters occur. Illustrative charts for problems
with two and three objective functions are constructed, in order to
depict the robustness of every POS in the reference Pareto front.
Robustness indices for the POS as well as for the whole Pareto set
are also calculated. In the end, we test the efficacy of the approach
over two numerical examples and a case study regarding a capital
budgeting problem for project selection with 108 binary decision
variables.

The structure of the paper is as follows: In Section 2 we provide
some basic concepts and definitions. In Section 3 we describe the
methodology to measure robustness in MOCO problems. Section 4
illustrates two numerical examples in order to test the method,
while Section 5 applies the method to an academic research
proposal selection problem. Finally, in Section 6 we present the
basic conclusions and discuss on some potential future perspec-
tives of the work.

2. Concepts, definitions and notation

This section is devoted to some fundamental concepts on
multi-objective combinatorial optimization, dominance and some
of its other related concepts, robustness analysis or concerns, and
some aspects on simulation.

2.1. MOCO problems

A multi-objective combinatorial optimization (MOCO) problem
can be defined as follows:

Definition 1. (multi-objective combinatorial optimization pro-
blem). Let I¼{1, 2,…, I,…,N} denote a finite set of N objects or
items, also called the ground set, and 2I denote its power set
(i.e., the set of all subsets of I), where |2I|¼2N. Consider the subset
SD2I as the set of feasible solutions. Define the outcome/objective
functions zk: I-R, such that the outcome vector of each solution
sAS is as follows:

z sð Þ ¼ z1 sð Þ; z2 sð Þ;…; zk sð Þ;…; zK sð Þð Þ; where zk sð Þ ¼ ∑
iA S

cik

with cik being the value/outcome associate with each object iAS,
for kth objective function (k¼1, 2,…,K). The MOCO problem
consists of finding a subset of feasible solutions, FAS, when
“maximizing” all the functions zk, for k¼1, 2,…,K (the sense of
“maximizing” signifies that we search for a particular set of
solutions called efficient solutions and defined in Section 2.2).

Any subset s of S is uniquely determined by its characteristic
function Xs: S-{0,1} where Xs(x)¼1 if xAS and Xs(x)¼1 if xeS.
With the help of this function, the problem of the above Definition
1 can be stated as a multi-objective optimization (MOO) problem:

“maximize” z1 xð Þ; z2 xð Þ;…; zk xð Þ;…; zK xð Þ� �

subject to : xAXD 0;1f gN

where x¼(x1,…, xi,…, xN) is the vector of binary decision variables
and X is the feasible region in the decision space. If the decision
space is further described by the proper equalities/inequalities, the
above MOO problem can be expressed as the following multiple
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