
Information Systems 30 (2005) 317–332

Towards practical meta-querying$

Jan Van den Busschea, Stijn Vansummerena,1,*, Gottfried Vossenb

aLimburgs Universitair Centrum, Universitaire Campus, B-3590 Diepenbeek, Belgium
bUniversity of Muenster, D-48159 Muenster, Germany

Received 31 March 2004; accepted 13 April 2004

Abstract

We describe a meta-querying system for databases containing queries in addition to ordinary data. In the context of

such databases, a meta-query is a query about queries. Representing stored queries in XML, and using the standard

XML manipulation language XSLT as a sublanguage, we show that just a few features need to be added to SQL to turn

it into a fully-fledged meta-query language. The good news is that these features can be directly supported by extensible

database technology.

r 2004 Elsevier Ltd. All rights reserved.

Keywords: Databases; Meta-querying; Stored queries; XML; XSLT; Extensible database technology

1. Introduction

Enterprise databases often contain not only
ordinary data, but also queries. Examples are view
definitions in the system catalog; usage logs or
workloads; and stored procedures as in SQL/PSM
or Postgres [1]. Unfortunately, these queries are
typically stored as long strings, which makes it
hard to use standard SQL to express meta-queries:

queries about queries. Meta-querying is an im-
portant activity in situations such as advanced

database administration, database usage monitor-
ing, and workload analysis. Examples of meta-
queries to a usage log are:

(1) Which queries in the log do the most joins?
(2) Which queries in the log return an empty

answer on the current instance of the data-
base?

(3) View expansion: replace, in each query in the
log, each view name by its definition as given
in the system catalog.

(4) Given a list of new view definitions (under the
old names), which queries in the log give a
different answer on the current instance under
the new view definitions?

Query 1 is syntactical: it only queries the stored
queries on the basis of their expressions. Query 2 is
semantical: its answer depends on the results of
dynamically executing the stored queries. Query 3

ARTICLE IN PRESS

$Recommended by M. Lenzerini

*Corresponding author. Tel.: +32-11-268219; fax: +32-11-

268299.

E-mail address: stijn.vansummeren@luc.ac.be

(S. Vansummeren).
1Research Assistant of the Fund for Scientific Research -

Flanders (Belgium).

0306-4379/$ - see front matter r 2004 Elsevier Ltd. All rights reserved.

doi:10.1016/j.is.2004.04.001



is again syntactical, but more so than query 1 in
that it also performs syntactical transformations.
Query 4 is syntactical and semantical together.

To express meta-queries, database administra-
tors and other advanced users typically resort to a
programming language like Perl, in combination
with Dynamic SQL. It would be much nicer
if they would not have to ‘‘leave’’ the database
system and could express their meta-queries
directly in Interactive SQL. Indeed, already in
1993, in his SIGMOD Innovations Award speech,
Jim Gray urged the database community to lower
the wall between data and programs. In the same
vein, the Asilomar Report puts the unification
between programs and data high on the database
research agenda [2]. As queries are an important
kind of program in the context of databases,
support for meta-querying thus seems to be a step
in the right direction towards understanding
how we can unify programs and data in database
systems.

In this paper, we present a practical meta-
querying system based on the relational model.
Our main design goal was to use current DBMS
technology and only extend standard SQL with
specific meta-querying features where necessary.
Stored queries are represented as syntax trees in
XML format. This representation provides a
convenient basis for syntactical meta-querying.
Indeed, rather than reinventing the wheel and
designing a new sublanguage for syntactical
manipulation of stored queries, it allows us to
use the standard XML transformation language
XSLT for this purpose. Many syntactical meta-
queries can then directly be expressed simply by
allowing XSLT function calls within SQL expres-
sions.2

This combination of SQL and XSLT gives us a
basic level of expressive power, but for more
complex syntactical meta-queries we need a bit
more. To this end, we enrich the SQL language
with XML variables which come in addition to

SQL’s standard range variables. XML variables
range not over the rows of a table, but rather over
the subelements of an XML tree. The range can be
narrowed by an XPath expression. (XPath is the
sublanguage of XSLT used to locate subelements
of XML documents.) XML variables thus allow us
to go from an XML document to a set of XML
documents. Conversely, we also add XML aggre-

gation [4], which allows us to go from a set of
XML documents to a single one.

SQL combined with XSLT and enriched with
XML variables and aggregation offers all the
expressive power one needs for ad-hoc syntactical
meta-querying. To allow for semantical meta-
querying as well, it now suffices to add an
evaluation function, taking the syntax tree of some
query as input, and producing the table resulting
from executing the query as output. We note that a
similar evaluation feature was already present in
the Postgres system.

What we obtain is Meta-SQL: a practical meta-
query language. Meta-SQL has as advantage that
it is not ‘‘yet another query language’’: it is entirely
compatible with modern SQL implementations
offered by contemporary extensible database
systems. Indeed, these systems already support
calls to external functions from within SQL
expressions, which allows us to implement the
XSLT calls. Furthermore, XML variables and
the evaluation function can be implemented
using set-valued external functions. As we will
show, the powerful feature of ‘‘lateral derived
tables’’, part of the SQL:1999 standard, turns out
to be crucial to make this work. XML aggregation,
finally, can be implemented as a user-defined
aggregate function.

We emphasize again that we are not proposing
yet another database language. Instead, our main
design goal was to stick as closely as possible to
standard SQL. Of course, a drastic alternative is to
abandon the relational model altogether and move
to, e.g., an XML-XQuery environment, where
meta-querying does not pose any problem. How-
ever, given the widespread use of relational
databases, a conservative approach such as ours
remains important.

This paper is further organized as follows.
In Section 2, we combine SQL with XSLT. In

ARTICLE IN PRESS

2We embrace XSLT because it is the most popular and stable

standard general-purpose XML manipulation language to date.

When other languages, notably XQuery [3], will take over this

role, it will be an easy matter to substitute XSLT by XQuery in

our overall approach.

J. Van den Bussche et al. / Information Systems 30 (2005) 317–332318



Download English Version:

https://daneshyari.com/en/article/10325405

Download Persian Version:

https://daneshyari.com/article/10325405

Daneshyari.com

https://daneshyari.com/en/article/10325405
https://daneshyari.com/article/10325405
https://daneshyari.com

