
Journal of Symbolic Computation 40 (2005) 795–829

www.elsevier.com/locate/jsc

Operational semantics for declarative
multi-paradigm languages✩

Elvira Alberta, Michael Hanusb,∗, FrankHuchb, Javier Oliverc,
Germán Vidalc

aDSIP, Complutense University of Madrid, E-28040 Madrid, Spain
bInstitut für Informatik, CAU Kiel, D-24098 Kiel, Germany

cDSIC, Technical University of Valencia, E-46022 Valencia, Spain

Received 14 January 2003; accepted 14 December 2004
Available online 2 March 2005

Abstract

Declarative multi-paradigm languages combine the most important features of functional, logic
and concurrent programming. The computational model of such integrated languages is usually
based on a combination of two different operational principles: narrowing and residuation. This
work is motivated by the fact that a precise definition of an operational semantics including all
aspects of modern multi-paradigm languages like laziness, sharing, non-determinism, equational
constraints, external functions and concurrency does not exist. Therefore, in this article, we present
the first rigorous operational description covering all theaforementioned features in a precise and
understandable manner. We develop our operational semantics in several steps. First, we define a

✩ A preliminary version of this article appeared in the Proceedings of WFLP’02 [Albert, E., Hanus, M.,
Huch, F., Oliver, J., Vidal, G., 2002b. Operational semantics for functional logic languages. In: Proc. of the
Int’l Workshop on Functional and (Constraint) Logic Programming. WFLP 2002. In: Electronic Notes in
Theoretical Computer Science, vol. 76. Elsevier Science Publishers.] and WRS’02 [Albert, E., Hanus, M.,
Huch, F., Oliver, J., Vidal, G., 2002a. An operational semantics for declarative multi-paradigm languages. In:
Proc. of the Int’l Workshop on Reduction Strategies in Rewriting and Programming. WRS 2002. In: Electronic
Notes in Theoretical Computer Science, vol. 70(6). Elsevier Science Publishers.]. This work was partially
supported by CICYT TIC 2001-2705-C03-01, by the Generalitat Valenciana under grants CTIDIA/2002/205
and GRUPOS03/025, by the ICT for EU–India Cross-Cultural Dissemination Project ALA/95/23/2003/077-054,
by the MCYT under grants HA2001-0059 and HU2003-0003, and by the DFG under grant Ha 2457/1-2.∗ Corresponding author. Tel.: +49 431 880 7271; fax: +49 431 880 7613.

E-mail addresses:elvira@sip.ucm.es (E. Albert), mh@informatik.uni-kiel.de (M. Hanus),
fhu@informatik.uni-kiel.de (F. Huch), fjoliver@dsic.upv.es (J. Oliver), gvidal@dsic.upv.es (G. Vidal).

0747-7171/$ - see front matter © 2005 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2004.01.001

http://www.elsevier.com/locate/jsc


796 E. Albert et al. / Journal of Symbolic Computation 40 (2005) 795–829

natural (big-step) semantics covering laziness, sharing and non-determinism. We also present an
equivalent small-step semantics which additionally includes a number of practical features like
equational constraints and external functions. Then, we introduce a deterministic version of the
small-step semantics which makes the search strategy explicit; this is essential for profiling, tracing,
debugging etc. Finally, the deterministic semantics is extended in order to cover the concurrent
facilities of moderndeclarative multi-paradigm languages.The semantics developed provides an
appropriate foundation for modeling actual declarative multi-paradigm languages like Curry. The
complete operational semantics has been implemented and used with various programming tools.
© 2005 Elsevier Ltd. All rights reserved.

Keywords: Functional logic programming; Operational semantics

1. Introduction

Declarative multi-paradigm languages combine the most important features of
functional programming (nested expressions, higher-order functions, efficient demand-
driven computations, polymorphism), logic programming (logical variables, partial data
structures, built-in search) and concurrent programming (concurrent computations with
inter-thread synchronization and communication on logical variables). The computational
model of such integrated languages is usually based on a seamless combination of
two differentoperational principles: narrowing and residuation (seeHanus(1994) for a
survey).Narrowing (Slagle, 1974) allows the instantiation of variables in expressions and
then applies reduction steps to the function calls of the instantiated expressions. This
instantiation is usually computed by unifying a subterm of the expression with the left-
hand side of some program rule. On the other hand,residuation (Aït-Kaci et al., 1987)
is based on the idea of delaying function calls until they are ready for a deterministic
evaluation. Residuation preserves the deterministic nature of functions and naturally
supports concurrent computations by employing dynamic scheduling.

This work is motivated by the fact that there is no existing precise definition
of an operational semantics covering all aspects of modern declarative multi-
paradigm languages. For instance, the report on the multi-paradigm language Curry
(Hanus, 2003) contains a fairly precise operational semantics but covers sharing
only informally. The operational semantics of the functional logic language Toy
(López-Fraguas and Sánchez-Hernández, 1999) is based on narrowing and sharing but
the formal definition is based on a narrowing calculus (González-Moreno et al., 1999)
which does not include a particular pattern-matching strategy. However, the latter becomes
important, e.g., if one wants to reason about costs of computations (seeAntoy (2001)
for a discussion about narrowing strategies and calculi). Defining a precise operational
semantics for these languages is not an easy task since one must cover many different
notions like sharing, logical variables, search strategies and concurrency, as well as the
interactions among them.

Defining a rigorous operational semantics covering all aspects of actual multi-paradigm
languages is a difficult but important task, not only for reasoning about programs and
correctness of implementations but also for the development of implementation-oriented
analyses and tools (like profilers, tracers, debuggers, partial evaluators). Well-known



Download English Version:

https://daneshyari.com/en/article/10325559

Download Persian Version:

https://daneshyari.com/article/10325559

Daneshyari.com

https://daneshyari.com/en/article/10325559
https://daneshyari.com/article/10325559
https://daneshyari.com

