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a b s t r a c t

We consider the problem of selling a fixed capacity or inventory of items over a finite selling period.

Earlier research has shown that using a properly set fixed price during the selling period is

asymptotically optimal as the demand potential and capacity grow large and that dynamic pricing

has only a secondary effect on revenues. However, additional revenue improvements through dynamic

pricing can be important in practice and need to be further explored. We suggest two simple dynamic

heuristics that continuously update prices based on remaining inventory and time in the selling period.

The first heuristic is based on approximating the optimal expected revenue function and the second

heuristic is based on the solution of the deterministic version of the problem. We show through a

numerical study that the revenue impact of using these dynamic pricing heuristics rather than fixed

pricing may be substantial. In particular, the first heuristic has a consistent and remarkable

performance leading to at most 0.2% gap compared to optimal dynamic pricing. We also show that

the benefits of these dynamic pricing heuristics persist under a periodic setting. This is especially true

for the first heuristic for which the performance is monotone in the frequency of price changes. We

conclude that dynamic pricing should be considered as a more favorable option in practice.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Pricing is one of the most important decisions that impact a
firm’s profitability. The effect of pricing is more profound for
companies in transportation services sector where it is difficult to
change capacities in the short term and variable costs are small.
Recognizing this, airlines, rental car companies and other firms in
transportation and service industries have begun to implement
techniques to improve their pricing and allocation decisions since
mid 1980s. Following the success of these practices, now broadly
called revenue management, pricing decisions are becoming more
tactical and dynamic pricing is increasingly being adopted in
retail and other industries.

In a seminal work, Gallego and van Ryzin [1] (GvR hereafter)
study the problem of dynamically pricing a fixed stock of items
over a finite horizon under uncertain demand. An important
result in GvR is that keeping the price constant (at a level
determined by the deterministic solution of the problem)
throughout the horizon has a bounded worst-case performance
and is asymptotically optimal as the expected sales goes to
infinity. GvR also show numerically that when the demand
function is exponential, fixed-price policies have good perfor-
mance even when the expected sales is small. The authors

conclude that ‘‘yoffering multiple prices can at best capture only
second-order increases in revenue due to the statistical variability
in demand’’. Since 1994, a large and important body of literature
in operations research has evolved to offer solutions and study
different variants of the problem studied in GvR. (Recent exam-
ples include research that study the impact of product substitu-
tion [2], consumer inertia [3] and competition and price
uncertainty [4] on dynamic pricing. See [5–7] for extended
reviews of earlier literature.) Although GvR caution that these
second-order increases in revenue may be significant in practice,
revenue management literature has remained relatively silent on
quantifying the benefits of dynamic pricing over fixed-price
policies. This is primarily due to practical convenience: comput-
ing optimal dynamic prices is difficult (if not impossible) and
changing prices frequently may be undesirable or costly.

Our primary aim in this paper is to reemphasize the power of
dynamic pricing under resupply restrictions. We suggest two
computationally simple dynamic pricing heuristics and show that
the performance of these heuristics can be significantly better
than that of fixed-price policies. In particular, we first propose the
revenue approximation heuristic which is based on approximating
the expected revenue of the optimal policy in order to calculate
the price to be applied for a given remaining inventory and
remaining time in the selling season. The approximation is a
combination of a lower bound based on the homogeneity of the
optimal expected revenue and an upper bound based on the
deterministic version of the problem. The second heuristic we
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suggest is the dynamic run-out rate heuristic which adaptively
uses the solution of the deterministic version of the problem. We
carry out an extensive numerical study which shows that the
revenue gap between fixed-price and optimal dynamic pricing
policies may be substantial and this gap worsens when the season
length (or demand potential) increases. We show that the two
heuristics that we propose close a significant portion of this gap
and lead to near-optimal expected revenues. We also show that
most of the benefits of dynamic pricing heuristics are sustained
by changing the prices periodically rather than continuously. For
the first heuristic, the performance is monotone in the number of
periods used. Our analysis and results are confined to the benefits
of dynamic pricing under ‘‘normal’’ statistical fluctuations in
demand. The benefits of dynamic pricing will be more pro-
nounced when the demand is non-homogeneous or when the
demand function or distribution is not known in advance.

Among the relevant works in the literature, Gallego and van
Ryzin [8] extend their model to the multiple products case and
demonstrate that two heuristics that are similarly based on the
solution of the deterministic version of the problem are asympto-
tically optimal. Cooper [9] proves asymptotical convergence results
that are stronger than those in GvR and [8]. Cooper [9] also presents
an example where updating prices (more precisely, the allocations
in Cooper’s model) by resolving the deterministic problem through-
out the horizon, a widely applied approach in practice, may perform
worser than applying the static policy. Secomandi [10] establishes
the conditions under which resolving does not deteriorate the
performance of heuristic pricing policies. Maglaras and Meissner
[11] show that resolving heuristics are also asymptotically optimal
as starting inventory and expected sales both go to infinity and
Cooper’s example should not persist in problems with large
demand potential. There is limited research on developing dynamic
pricing heuristics and those that are suggested are usually based on
deterministic formulations. The main contribution in this paper is
to propose two new heuristics that are simple and computationally
feasible. While dynamic run-out rate heuristic also uses the
deterministic solution in feedback form, revenue approximation
heuristic is based on approximating the revenue-to-go function
using a homogeneity assumption.

The literature also does not provide enough guidance on non-
asymptotic or average performance of heuristic policies and the
factors that moderate their performance. In GvR, the authors use
the exponential price sensitivity of demand and conduct a small
numerical experiment to study the performance of the fixed-price
policy against the optimal dynamic policy. It is shown that the
revenue gap between the fixed-price and dynamic pricing policies
is smaller than the theoretical bounds and gets smaller as starting
inventory increases. However, Zhao and Zheng [12] show that the
revenue gap is more significant when the constant demand
elasticity function is used rather than the exponential demand
function. Zhao and Zheng [12] also show that the revenue gap is
rather insensitive to the elasticity of demand and there are
diminishing marginal returns of dynamic pricing policies to the
number of prices used. Maglaras and Meissner [11] conduct a
numerical study on the multiproduct pricing problem with a
linear demand function. Their results show that the fixed-price
policy’s regret over the optimal dynamic policy can be substantial
and resolving the deterministic problem periodically during the
horizon can offer significant benefits. In Section 3, we provide
the results of an extensive numerical experiment to study the
performance of heuristic pricing policies. The results show that
the regret of fixed-price policies can be important in practice and
dynamic pricing heuristics can be used to generate near-optimal
results.

The remainder of this paper is organized as follows. In Section 2,
we propose the revenue approximation and dynamic run-out rate

heuristics. In Section 3, we report the results of a detailed numerical
study that quantifies the regrets of fixed-price and dynamic pricing
heuristics over the optimal dynamic pricing policy. This section also
analyzes the effect of periodic price changes on the performance of
dynamic pricing heuristics. We conclude in Section 4.

2. Dynamic pricing heuristics

We first state our problem following the notation in GvR and
provide some preliminary results. A given stock of n items is to be
sold over a finite season of length t. The demand rate depends
only on the current price p through a function lðpÞ, whose inverse
is pðlÞ. The revenue rate, denoted by rðlÞ ¼ lpðlÞ, is assumed to
satisfy liml-0rðlÞ ¼ 0, and is continuous, bounded, concave and
has a least maximizer denoted by ln

¼minfl : rðlÞ ¼maxlZ0rðlÞg
(the corresponding price is pn ¼ pðln

Þ). There exists a null price
denoted by p1 for which limp-p1lðpÞ ¼ 0. The price is selected
from a set of allowable prices P ¼Rþ [ p1. The corresponding set
of allowable rates is denoted by L¼ flðpÞ : pAPg.

For the numerical examples and experiments in this paper, we
use three different functions to model the price–demand relation-
ship: exponential, linear and logit demand functions. These are
some of the most commonly used demand functions in theory
and practice [7,13] and are given in Table 1.1

The demand is stochastic and modeled as a Poisson Process.
The firm controls the intensity at every instant by using a price in
P. The problem is to determine the pricing policy that maximizes
the total expected revenue over the season denoted by Jnðn,tÞ.

For a given remaining time s and inventory x in the season,
GvR show that the optimal expected revenue-to-go (and the
corresponding optimal price at that instant) can be found by
solving the following system of differential

@Jnðx; sÞ

@s
¼ sup

l
frðlÞ�lðJnðx,sÞ�Jnðx�1,sÞÞg, for all x¼ 1,2, . . . ,n,

ð1Þ

with boundary conditions Jnðx,0Þ ¼ 0 for all x¼ 1,2, . . . ,n and
Jnð0,sÞ ¼ 0 for all srt. GvR also prove the existence of a unique
solution to (1) along with monotonicity of the optimal expected
revenue (and corresponding demand rates and prices) with
respect to remaining inventory and remaining time in the season.

GvR state that obtaining a solution to (1) is quite difficult – if not
impossible – for arbitrary demand functions. In addition, imple-
menting a pricing policy that would change the price continuously
over time may be difficult in practice. Therefore, they suggest the
use of a heuristic pricing policy in which the price is constant for
the entire season. The fixed-price (FP) heuristic that they develop
uses the solution of the deterministic version of the problem and
sets the price at p ¼ pðlÞ ¼ pðminfl0,ln

gÞ, where l0
¼ n=t is the run-

out rate and ln is the revenue maximizing rate. One can improve

Table 1
The demand functions that are used in the analysis.
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1 Wð:Þ denotes the principal branch of the Lambert W function, which is the

inverse of the function f ðwÞ ¼wew . The numeric value of Wð1=eÞ is approximately

0.27846.
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